• Title/Summary/Keyword: tomato (Lycopersicon esculentum M.)

Search Result 45, Processing Time 0.021 seconds

Effects of Methyl Jasmonate on Ethylene Producton in Tomato (Lycopersicon esculentum Mill.) Hypocotyl Segments and Fruits (Methyl jasmonate가 토마토(Lycopersicon esculentum Mill.)하배축 절편과 열매에서 에틸렌 생성에 미치는 영향)

  • June Seung Lee
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.235-242
    • /
    • 1995
  • Effects of methyl jasmonate (MeJA) on ethylene production in tomato(Lycopersicon esculentum Mill.) hypocotyl segments and fruits were studied. Ethylene production in tomato hypocotyl segments was inhibited by the increasing concentratons of MeJA, and 450 $\mu$M of MeJA showed 50% inhibitory effect. Time course data indicate that this inhibitory effect of MeJA appeared after 3 h of incubation period and continued until 24 h. Inhibition of ethylene producton by MeJA was due to the decrease in 1-aminocyclopropane-1-carboxylic acid(ACC) synthase activity. However, MeJA treatment had no effect on ACC oxidase activity and the accumulaton of ACC oxidase mRNAs. MeJA also inhibited auxin-induced ethylene production by decreasing in ACC synthase activity. In contrast, MeJA stimulated ethylene production in tomato fruits. When 30 $\mu$L/mL MeJA was treated in a gaseous state, ethylene production doubled and this stimulating effect continued until 4 days. To investigate the mechanisms of MeJA on ethylene production, ACC synthase and ACC oxidase activities were examined after MeJA treatment. MeJA increased the activities of both ACC synthase and ACC oxidase, and induced ACC oxidase mRNA accumulation. These data suggest that MeJA plays distinct roles in the ethylene production in different tomato tissues. It is possible that MeJA affects differently the mechanisms of signal transuction leading to the ethylene biosynthesis.

  • PDF

Resistance of Commercial Tomato Cultivars to Meloidogyne arenaria and M. incognita (시판 토마토품종의 고구마 뿌리혹선충과 땅콩 뿌리혹선충에 대한 저항성)

  • Kim, Donggeun;Ryu, Younghyun;Park, Hyunro;Huh, Changseok;Bae, Changhwan
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • Root-knot nematodes (Meloidogyne spp.) are among the main pathogens of greenhouse crops worldwide. Plant resistance is currently the method of choice for controlling these pests. To select resistant tomato against two common species of root-knot nematodes, M. incognita and M. arenaria, 36 commercial tomato (Lycopersicon esculentum Mill.) cultivars were screened. Seventeen tomato cultivars were resistant to both root-knot nematodes: six in cherry tomato, 'Tenten', 'Cadillac', 'Cutti', 'Sweet', 'Ppotto', 'Lycopin-9', eight in globe tomato, 'Lovely 240', 'Dotaerang Dia', 'Cupirang', 'Dotaerang Master', 'Super Dotaerang', 'Dotaerang Season', 'Miroku', 'Hoyong', and three in root stock, 'Special', 'Fighting', and 'Magnet'.

Cadmium-Induced Phytotoxicity in Tomato Seedlings Due to the Accumulation of H2O2 That Results from the Reduced Activities of H2O2 Detoxifying Enzymes

  • Cho, Un-Haing
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.107-114
    • /
    • 2004
  • Tomato (Lycopersicon esculentum) seedlings exposed to various concentrations of $CdC1_2$ (0∼100 $\mu$M) in the nutrient solution for up to 9 days were analyzed with the seedling growth, $H_2O_2$ production, glutathione levels and activity changes of enzymes related to $H_2O_2$ removal. The growth of seedlings was inhibited with over 50 $\mu$M Cd, whereas the levels of $H_2O_2$ and glutathione were enhanced with Cd exposure level and time. Meanwhile, Cd exposure increased the activities of catalase (CAT) and glutathione reductase (GR) but decreased the activities of dehydroascorbate acid reductase (DHAR) and ascorbate peroxidase (APX) in both leaves and roots. These results suggest that the altered activities of antioxidant enzymes particularly involved in the $H_2O_2$ removal and the subsequent $H_2O$$_2$ accumulation could induce the Cd-induced phytotoxicity.

Distribution and Phytotoxicity of Mercury in Tomato Seedlings Exposed to Mercury

  • Cho, Un-Haing
    • The Korean Journal of Ecology
    • /
    • v.22 no.2
    • /
    • pp.89-94
    • /
    • 1999
  • Thirty-day-old seedlings of tomato (Lycopersicon esculentum) were treated with different concentrations of HgCl$_2$(0. 10 and 50 $\mu$M) for up to 20 days. and the detailed distribution of Hg absorbed and its toxicity in different plant parts (roots, stems and leaves) were investigated. The accumulation of Hg in plants increased with external Hg concentrations. and Hg is strongly retained by roots. Further. Hg content in leaves was various. showing more accumulation in older leaves. Seedlings exposed to toxic levels of Hg showed not only the reduction of dry weight and length of both shoot and root. and chlorophyll levels in leaves but also the enhancement of malondialdehyde (a lipid peroxidation product) formation in all plant parts investigated. These results suggest that physiological impairment of a plant exposed to Hg may be achieved by internal distribution of Hg absorbed and Hg-induced oxidative stress in different plant parts.

  • PDF

Artificial Light Sources Influence Cherry Tomato (Lycopersicon esculentum var. cv. 'CF Jelly') Growth and Development (인공광원이 방울토마토(Lycopersicon esculentum var. cv. 'CF Jelly') 생육에 미치는 영향)

  • Jeong-Wook Heo;Jeong-Hyun Baek;Young-Sin Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.245-251
    • /
    • 2022
  • BACKGROUND: Selection an suitable light source is essential in the year-round production of horticultural crops in closed production systems such as plant factory with controlled environments. This study was investigated to confirm the effects of artificial light sources on growth of cherry tomato'CF Jelly'(Lycopersicon esculentum var.) under high-pressure sodium lamps (HPS), metal-halide lamps (MH), and LEDs. METHODS AND RESULTS: Light intensity of the light sources was controlled at 220±30 µmol/m2/s with 12 hrs of photoperiod for a day. Flower development was significantly faster in HPS and MH treatments compared to the LEDs. There was no significant difference between the leaf number and leaf shape under the HPS and MH treatments. Reproductive growth of cherry tomato was significantly promoted by the LEDs treatment of blue plus red lights. Fruit yield per plant also increased under the LEDs compared to the others. CONCLUSION(S): Growth, flowering, and fruit setting of the cherry tomato were accomplished by the artificial lights under plant factory conditions. The HPS treatment showed negative effect on fruit quality in terms of blossom-end rot incidence compared to the LEDs or MH treatment. Effect of the LEDs on promotion of fruit weight and yield was also proved. Additional research should be carried out for improving sugar metabolism or decreasing disease in the fruits under plant factory system using only artificial lights.

Superoxide Dismutase Activity in Suspension Cultured Cells of Tomato (Lycopersicon esculentum Mill) (토마토(Lycopersicon esculentum Mill) 현탁배양세포에서 Superoxide Dismutase 활성)

  • 유순희;허경혜;권석윤;이행순;방재욱;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.1
    • /
    • pp.57-61
    • /
    • 1997
  • We investigated changes in the superoxide dismutase (SOD) activity and SOD isoenzyme pattern in suspension cultures of tomato (Lycopersicon esculentum), which were compared with those of intact tomato plants. two grams (fr wt) of cells subcultured at 15-day intervals were inoculated into 50 mL MS medium containing l mg/L 2,4-D and 30 g/L sucrose in a 300 mL flask and maintained at $25^{\circ}C$ in the dark (100 rpm). The cell growth reached a maximum at 20 days after subculture (DAS), followed by a rapid decrease with further cultures. The cell colour changed from white to black from 23 DAS. The intracellular SOD activity (units/g cell dry wt) was significantly increased from 23 DAS and reached a maximum at 28 DAS (52,400 units), followed by a decrease with further cultures, whereas the extracellular SOD activity showed a maximum at 25 DAS (27,800 units/50 mL medium). The total SOD activity per flask showed a maximum at 25 DAS (35,700 units), in which the extracellular SOD activity occupied about 75%. The tomato cultured cells had four SOD isoenzymes and their patterns were well correlated with SOD activity without a qualitative change during the cell cultures. The intact tomato plants had an additional CuZnSOD isoenzyme, showing the different isoenzyme patterns from cultured cells.

  • PDF

Partial Purification and Characterization of Superoxide Dismutase from Tomato (Lycopersicon esculentum) Fruit

  • Kumar, Sunil;Dhillon, Santosh;Singh, Dharam;Singh, Randhir
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.283-288
    • /
    • 2004
  • Superoxide dismutase (SOD) from tomato (Lycopersicon esculentum Mill.) fruit was purified by ammonium sulphate precipitation, Sephadex G-100 and DEAE-cellulose column chromatographies. A 22 fold purification and an overall yield of 44% were achieved. The purified enzyme was a homodimer with Mr 37.1 kDa and subunit Mr 18.2 kDa as judged by SDS-PAGE. SOD showed $K_{m}$ values of 25 ${\times}$ 10$^{-6}$ M and 1.7 ${\times}$ 10$^{-6}$ M for nitroblue tetrazolium (NBT) and riboflavin as substrates, respectively. The enzyme was thermostable upto 5$0^{\circ}C$ and exhibited pH optima of 7.8. The effect of metal ions and some other compounds on enzyme activity was studied. $Co^{2+}$ and $Mg^{2+}$ were found to enhance relative enzyme activities by 27 % and 73 %, respectively, while M $n^{2+}$ inhibited the SOD activity by 64%. However, $Ca^{2+}$ and C $u^{2+}$ had no effect on enzyme activity. Other compounds like $H_2O$$_2$ and Na $N_3$ inhibited enzymatic activities by 60% and 32%, respectively, while sodium dodecyl sulphate (SDS), chloroform plus ethanol and $\beta$-mercaptoethanol had no effect on the activity of SOD. of SOD.

Stem Rot of Tomato Caused by Sclerotium rolfsii in Korea

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Mycobiology
    • /
    • v.30 no.4
    • /
    • pp.244-246
    • /
    • 2002
  • A destructive stem rot of tomato(Lycopersicon esculentum) occurred sporadically some farmers' fields in Jinju City, Gyeongnam province in Korea. The infected plants also showed stem, crown rot or whole plant blight. White mycelium spread over stems of infected plants and formed sclerotia on the old lesions nearby soil surface. The fungus showed maximum mycelial growth around $30^{\circ}C$. The fungus formed white colony on PDA, usually with many narrow mycelial strands in the aerial mycelium and the width were $4.0{\sim}9.8{\mu}m$. The typical clamp connections were formed on the mycelium. Numerous sclerotia was formed on PDA at $30^{\circ}C$. The shape of sclerotia was globoid and $1.0{\sim}3.0$ mm in size. The fungus was isolated repeatedly from the infected tissues and the pathogenicity was confirmed to tomato and identified as Sclerotium rolfsii. This is the first report on the stem rot of tomato caused by S. rolfsii in Korea.

Effect of the Concentration of Nutrient Solution on the Growth of Tomato(Lycopersicon esculentum Mill.) in Substrate Culture (고형배지경에서 배양액농도가 토마토의 생육에 미치는 영향)

  • 노미영;배종향;이용범;박권우;권영삼
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 1995
  • This study was carried out to investigate the effect of the concentration of nutrient solution on the growth of tomato(Lycopersicon esculentum Mill. cv. seokwang) in substrate culture. The substrates used in the experiment were perlite, vermiculite, and peatmoss. Tomato plants were treated with different concentrations of nutrient solution, viz. 0.5, 1.0, 2.0, 3.0, and 5.0mS/cm at seedling stage and transferred to different treatments, 1.0, 2.0, and 3.0mS/cm after transplanting in each substrate. As the concentrations of nutrient solution increased from 0.5 to 3.0mS/cm at seedling stage, the $CO_2$ assimilation rates of seedlings increased in all three substrate culture. Beyond this range, the $CO_2$ assimilation rates of seedlings decreased. By increasing the concentrations of nutrient solution, plant height, leaf length, leaf width, stem diameter, and top dry weight increased in perlite and were high at 2-5mS/cm in vermiculite. On the other hand, in peatmoss, the best result was shown at 3.0mS/cm. Therefore, the adequate concentration of nutrient solution on early growth of seedlings differed among substrates and was shown to be 3.0-5.0mS/cm in perlite, 2.0-5.0mS/cm in vermiculite, and 3.0mS/cm in peatmoss. Generally, as the concentrations of nutrient solution increased from 1.0 to 3.0mS/cm after transplanting, dry weight increased significantly in all three substrate culture. However, dry weights of tomato plants grown under high concentration of 5.0mS/cm slightly increased both at seedling stage and after transplanting.

  • PDF

Changes of Thiols and Oxidative Stress in Tomato Seedlings Exposed to Cadmium

  • Cho, Un-Haing;Seo, Nam-Ho
    • Journal of Ecology and Environment
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2006
  • Tomato (Lycopersicon esculentum Mill) seedlings exposed to various concentrations of $CdCl_2(0{\sim}100{\mu}M)$ in a nutrient solution for up to 9 days were analyzed with respect to the thiol changes and oxidative stress. The Cd exposure increased total non-protein thiols (NPT) and cysteine in both leaves and roots, total glutathione in leaves, and the ratios of oxidized glutathione (GSSG)/reduced glutathione (GSH) in both leaves and roots, but decreased the ratio of dehydroascorbate (DASA)/ascorbate(ASA) in leaves. Our results suggest that the Cd-induced GSH depletion due to thiol synthesis and oxidation alters the antioxidant activity of seedlings for $H_2O_2$, and the subsequent $H_2O_2$ accumulationand oxidative stress result in phytotoxicity.