• Title/Summary/Keyword: toll-like receptor 4

Search Result 220, Processing Time 0.027 seconds

Dectin-1 Stimulation Selectively Reinforces LPS-driven IgG1 Production by Mouse B Cells

  • Seo, Beom-Seok;Lee, Sang-Hoon;Lee, Ju-Eon;Yoo, Yung-Choon;Lee, Junglim;Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.205-212
    • /
    • 2013
  • Dectin-1, which specifically recognizes ${\beta}$-glucan of fungal cell walls, is a non-Toll-like receptor (TLR) pattern recognition receptor and a representative of C-type lectin receptors (CLRs). The importance of Dectin-1 in innate immune cells, such as dendritic cells and macrophages, has previously been well studied. However, the function of Dectin-1 in B cells is very poorly understood. To determine the role of Dectin-1 in B cell activation, we first investigated whether mouse B cells express Dectin-1 and then assessed the effect of Dectin-1 stimulation on B cell proliferation and antibody production. Mouse B cells express mRNAs encoding CLRs, including Dectin-1, and surface Dectin-1 was expressed in B cells of C57BL/6 rather than BALB/c strain. Dectin-1 agonists, heat-killed Candida albicans (HKCA) and heat-killed Saccharomyces cerevisiae (HKSC), alone induced B cell proliferation but not antibody production. Interestingly, HKSC, HKCA, and depleted zymosan (a selective Dectin-1 agonist) selectively enhanced LPS-driven IgG1 production. Taken together, these results suggest that, during fungal infection, ${\beta}$-glucan-stimulated Dectin-1 may cooperate with TLR4 to specifically enhance IgG1 production by mouse B cells.

Flagellin-Stimulated Production of Interferon-β Promotes Anti-Flagellin IgG2c and IgA Responses

  • Kang, Wondae;Park, Areum;Huh, Ji-Won;You, Gihoon;Jung, Da-Jung;Song, Manki;Lee, Heung Kyu;Kim, You-Me
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.251-263
    • /
    • 2020
  • Flagellin, a major structural protein of the flagellum found in all motile bacteria, activates the TLR5- or NLRC4 inflammasome-dependent signaling pathway to induce innate immune responses. Flagellin can also serve as a specific antigen for the adaptive immune system and stimulate anti-flagellin antibody responses. Failure to recognize commensal-derived flagellin in TLR5-deficient mice leads to the reduction in anti-flagellin IgA antibodies at steady state and causes microbial dysbiosis and mucosal barrier breach by flagellated bacteria to promote chronic intestinal inflammation. Despite the important role of anti-flagellin antibodies in maintaining the intestinal homeostasis, regulatory mechanisms underlying the flagellin-specific antibody responses are not well understood. In this study, we show that flagellin induces interferon-β (IFN-β) production and subsequently activates type I IFN receptor signaling in a TLR5- and MyD88-dependent manner in vitro and in vivo. Internalization of TLR5 from the plasma membrane to the acidic environment of endolysosomes was required for the production of IFN-β, but not for other pro-inflammatory cytokines. In addition, we found that anti-flagellin IgG2c and IgA responses were severely impaired in interferon-alpha receptor 1 (IFNAR1)-deficient mice, suggesting that IFN-β produced by the flagellin stimulation regulates anti-flagellin antibody class switching. Our findings shed a new light on the regulation of flagellin-mediated immune activation and may help find new strategies to promote the intestinal health and develop mucosal vaccines.

High-fat Diet Accelerates Intestinal Tumorigenesis Through Disrupting Intestinal Cell Membrane Integrity

  • Park, Mi-Young;Kim, Min Young;Seo, Young Rok;Kim, Jong-Sang;Sung, Mi-Kyung
    • Journal of Cancer Prevention
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • Background: Excess energy supply induces chronic low-grade inflammation in association with oxidative stress in various tissues including intestinal epithelium. The objective of this study was to investigate the effect of high-fat diet (HFD) on intestinal cell membrane integrity and intestinal tumorigenesis in $Apc^{Min/+}$ mice. Methods: Mice were fed with either normal diet (ND) or HFD for 12 weeks. The number of intestinal tumors were counted and biomarkers of endotoxemia, oxidative stress, and inflammation were determined. Changes in intestinal integrity was measured by fluorescein isothiocyanate (FITC)-dextran penetration and membrane gap junction protein expression. Results: HFD group had significantly higher number of tumors compared to ND group (P < 0.05). Blood total antioxidant capacity was lower in HFD group, while colonic 8-hydroxy-2'-deoxyguanosine level, a marker of oxidative damage, was higher in HFD group compared to that of ND group (P < 0.05). The penetration of FITC-dextran was substantially increased in HFD group (P < 0.05) while the expressions of membrane gap junction proteins including zonula occludens-1, claudin-1, and occludin were lower in HFD group (P < 0.05) compared to those in ND group. Serum concentration of lipopolysaccharide (LPS) receptor (CD14) and colonic toll-like receptor 4 (a LPS receptor) mRNA expression were significantly higher in HFD group than in ND group (P < 0.05), suggesting that significant endotoxemia may occur in HFD group due to the increased membrane permeability. Serum interleukin-6 concentration and myeloperoxidase activity were also higher in HFD group compared to those of ND group (P < 0.05). Conclusions: HFD increases oxidative stress disrupting intestinal gap junction proteins, thereby accelerating membrane permeability endotoxemia, inflammation, and intestinal tumorigenesis.

Anti-Inflammatory and Anti-allergic Effects of Gnaphalium affine Extract (떡쑥 추출물의 항염증 및 항알러지 효과)

  • Roh, Kyung-Baeg;Lee, Jung-A;Park, Junho;Jung, Kwangseon;Jung, Eunsun;Park, Deokhoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.2
    • /
    • pp.103-114
    • /
    • 2017
  • Gnaphalium affine D. DON (GA) has been used as a vegetable as well as a folk medicine in East Asia. The antioxidant and anti-complementary activity of GA extract (GAE) has also been reported. However, little is known about its anti-inflammatory and anti-allergic effect and mechanism of action. In this study, we evaluated the inhibitory effects of GAE on the production of inflammatory mediators such as NO, $PGE_2$, TLR4, eotaxin-1 and histamine. Our results suggest that GAE inhibits the production of NO and $PGE_2$ by inhibiting transcriptional activation via the involvement of iNOS and COX-2. The LPS-induced expression of Toll-like receptor 4 (TLR4) was also attenuated. In addition, GAE inhibited A23187-induced histamine release from MC/9 mast cells. It also inhibited the production of eotaxin-1 induced by IL-4. Collectively, these results suggest that GAE may have considerable potential as a cosmetic ingredient with anti-inflammatory and anti-allergic properties.

TIR-catalyzed Small Molecules: Structure and Function in Plant Immunity (TIR 촉매반응에 의해 생성된 소분자들의 식물면역반응에서의 역할)

  • Seong-Hyeon Bae;Sang-Hyun Park;Ye-Rim Cha;Dawon Jeon;Gah-Hyun Lim
    • Journal of Life Science
    • /
    • v.34 no.9
    • /
    • pp.666-672
    • /
    • 2024
  • Plants recognize pathogens through intracellular receptors that trigger defense signaling. Nucleotide-binding leucine-rich repeat (NLR) proteins within a cell specifically recognize pathogenic molecules (effectors), leading to signal transduction that ultimately triggers the cell death pathway, thereby inducing effector-triggered immunity in plants. NLR proteins are broadly categorized into two types based on their N-terminal domains: coiled-coil domain NLRs (CNLs) and toll/interleukin-1 receptor (TIR) domain NLRs (TNLs) are defined by their unique N-terminal domains. The TIR domain, which is responsible for activates nicotinamide adenine dinucleoside hydrolases (NADases), is crucial for the degradation of the NAD+ cofactor. TNL-dependent immune signaling involves lipase-like proteins known as Enhanced Disease Susceptibility 1 (EDS1) and its partners Phytoalexin Deficient 4 (PAD4) and Senescence-Associated Gene 101 (SAG101). This immune system also requires helper NLR subfamilies, such as activated disease resistance 1 (ADR1) and N requirement gene 1 (NRG1). The catalytic activity of TIR domain proteins generates various small molecules reported to activate plant's immune responses. These small molecules bind to specific sites on EDS1-PAD4 and EDS1-SAG101, inducing structural changes in the EP domain, and subsequently enabling interaction with ADR1 or NRG1. Here, we will discuss the characteristics of these small molecules and describe their relationships with protein complexes based on their structural and biochemical characteristics. We will also discuss how these small molecules can activate immune pathways.

Indigo Naturalis in Inflammatory Bowel Disease: mechanisms of action and insights from clinical trials

  • Hyeonjin Kim;Soohyun Jeong;Sung Wook Kim;Hyung-Jin Kim;Dae Yong Kim;Tae Han Yook;Gabsik Yang
    • Journal of Pharmacopuncture
    • /
    • v.27 no.2
    • /
    • pp.59-69
    • /
    • 2024
  • This study investigates the therapeutic potential of Indigo Naturalis (IN) in treating a Inflammatory Bowel Disease (IBD). The objective is to comprehensively examine the effects and pharmacological mechanisms of IN on IBD, assessing its potential as an novel treatment for IBD. Analysis of 11 selected papers is conducted to understand the effects of IN, focusing on compounds like indirubin, isatin, indigo, and tryptanthrin. This study evaluates their impact on Disease Activity Index (DAI) score, colon length, mucosal damage, and macrophage infiltration in Dextran Sulfate Sodium (DSS)-induced colitis mice. Additionally, It investigate into the anti-inflammatory mechanisms, including Aryl hydrocarbon Receptor (AhR) pathway activation, Nuclear Factor kappa B (NF-κB)/nod-like receptor family pyrin domain containing 3 (NLRP3)/Interleukin 1 beta (IL-1β) inhibition, and modulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/NF-κB and Mitogen Activated Protein Kinase (MAPK) pathways. Immunomodulatory effects on T helper 17 (Th17)/regulatory T cell (Treg cell) balance and Glycogen synthase kinase-3 beta (GSK3-β) expression are also explored. Furthermore, the study addresses the role of IN in restoring intestinal microbiota diversity, reducing pathogenic bacteria, and increasing beneficial bacteria. The findings reveal that IN, particularly indirubin and indigo, demonstrates significant improvements in DAI score, colon length, mucosal damage, and macrophage infiltration in DSS-induced colitis mice. The anti-inflammatory effects are attributed to the activation of the AhR pathway, inhibition of inflammatory pathways, and modulation of immune responses. These results exhibit the potential of IN in IBD treatment. Notably, the restoration of intestinal microbiota diversity and balance further supports its efficacy. IN emerges as a promising and effective treatment for IBD, demonstrating anti-inflammatory effects and positive outcomes in preclinical studies. However, potential side effects necessitate further investigation for safe therapeutic development. The study underscores the need for future research to explore a broader range of active ingredients in IN to enhance therapeutic efficacy and safety.

(E)-1-(2-(2-nitrovinyl)phenyl)pyrrolidine inhibits Inducible Nitric Oxide Synthase Expression in RAW264.7 Macrophages Stimulated with Lipopolysaccharide

  • Gu, Gyo-Jeong;Eom, Sang-Hoon;Suh, Chang Won;Koh, Kwang Oh;Kim, Dae Young;Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.168-172
    • /
    • 2013
  • Toll-like receptors (TLRs) play an important role for host defense against invading pathogens. TLR4 has been identified as the receptor for lipopolysaccharide (LPS), which is a cell wall component of gram-negative bacteria. The activation of TLR4 signaling by LPS leads to the activation of NF-${\kappa}B$ and the expression of pro-inflammatory gene products such as cytokines, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). To evaluate the therapeutic potential of (E)-1-(2-(2-nitrovinyl)phenyl)pyrrolidine (NVPP), previously synthesized in our laboratory, NF-${\kappa}B$ activation and iNOS and COX-2 expression induced by LPS were examined. NVPP inhibited the activation of NF-${\kappa}B$ induced by LPS. NVPP also suppressed the iNOS expression induced by LPS but it did not suppress COX-2 expression induced by LPS. These results suggest that NVPP has the specific mechanism for anti-inflammatory responses.

SCIENCE - Overview of the Immune System (학술 4 - 면역기구(免疫機構)의 재음미(再吟味))

  • Kim, U-Ho
    • Journal of the korean veterinary medical association
    • /
    • v.48 no.3
    • /
    • pp.177-191
    • /
    • 2012
  • 2011년도 Nobel 생리(生理) 의학상(醫學賞) : 자연(自然)(선천)(先天) 면역(免疫)(innate immunity)의 활성화에 관한 연구업적으로 B. A. Beutler와 J. A. Hoffmann, 그리고 수지상세포(樹枝狀細胞)(dendritic cell; DC)발견과 적응(適應)(획득)(獲得)면역(免疫)(adaptive immunity)에 있어서의 그들 세포의 역할을 밝혀낸 R. M. Steinman의 공동수상으로 금년도 Nobel 생리 의학상 수상자가 결정되었다는 보도가 지난 10월 3일 있었다(1-3). 그들의 업적을 요약하면 대략 다음과 같다. (Steinman교수는 Nobel수상자 발표 3일전인 9월 30일 암으로 사망함). 그들은 면역기구(immune system)의 활성화의 관건(key)이 되는 원리를 밝혀냄으로써, 면역기구에 관한 우리들의 이해를 혁신하였던 것이다. 과학자들은 오랫동안 세균(bacteria)이나 기타 미생물병원체들에 의한 공격에 대비하여 그들 자신을 방어하는 사람이나 기타 동물체에서의 면역응답(免疫應答)(immune response)의 문지기들을 탐색해 왔다. Beutler와 Hoffmann은 그와 같은 병원미생물을 인식하여 생체의 면역응답의 첫 단계인 자연면역을 활성화 할 수 있는 수용체 단백질(toll-like receptor protein)을 규명한 것이다(4,5). 한편 Steinmann은 면역계의 수지상세포(DC)와 병원미생물이 생체로부터 배제되는 면역응답의 후기단계인 적응면역을 활성화하고 조절하는 그들의 독특한 재능을 규명해 낸 것이다(6-8). 그들 3명의 발명은, 면역응답의 자연 및 적응 양상(樣相)이 어떻게 활성화되는 가를 밝혀냄으로써 질병의 기전에 관한 참신한 식견(識見)을 제공한 것이다. 그들의 연구는 감염병(感染病)(infectious disease), 암(癌)(cancer) 그리고 염증성질환(炎症性疾患)(inflammatory disease)에 대응하는 예방과 치료의 개발을 위한 새로운 방법을 개척한 것이다.

  • PDF

Immunological Mechanisms by Which Concomitant Helminth Infections Predispose to the Development of Human Tuberculosis

  • Mendez-Samperio, Patricia
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.4
    • /
    • pp.281-286
    • /
    • 2012
  • Helminthic infections afflict over 1.5 billion people worldwide, while Mycobacterium tuberculosis infects one third of the world's population, resulting in 2 million deaths per year. Although tuberculosis and helminthic infections coexist in many parts of the world, and it has been demonstrated that the T-helper 2 and T-regulatory cell responses elicited by helminths can affect the ability of the host to control mycobacterial infection, it is still unclear whether helminth infections in fact affect tuberculosis disease. In this review article, current progress in the knowledge about the immunomodulation induced by helminths to diminish the protective immune responses to bacille Calmette-Guerin vaccination is reviewed, and the knowledge about the types of immune responses modulated by helminths and the consequences for tuberculosis are summarized. In addition, recent data supporting the significant reduction of both M. tuberculosis antigen-specific Toll-like receptor (TLR) 2 and TLR9 expression, and pro-inflammatory cytokine responses to TLR2 and TLR9 ligands in individuals with M. tuberculosis and helminth co-infection were discussed. This examination will allow to improve understanding of the immune responses to mycobacterial infection and also be of great relevance in combating human tuberculosis.

Differential Gene Expression Profiling in Human Promyelocytic Leukemia Cells Treated with Benzene and Ethylbenzene

  • Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • Benzene and ethylbenzene (BE), the volatile organic compounds (VOCs) are common constituents of cleaning and degreasing agents, paints, pesticides, personal care products, gasoline and solvents. VOCs are evaporated at room temperature and most of them exhibit acute and chronic toxicity to human. Chronic exposure of benzene is responsible for myeloid leukemia and also ethylbenzene is also recognized as a possible carcinogen. To evaluate the BE effect on human, whole human genome 35 K oligonucleotide microarray were screened for the identification of the differential expression profiling. We identified 280 up-regulated and 201 down-regulated genes changed by more than 1.5 fold by BE exposure. Functional analysis was carried out by using DAVID bioinformatics software. Clustering of these differentially expressed genes were associated with immune response, cytokine-cytokine receptor interaction, toll-like signaling pathway, small cell lung cancer, immune response, apoptosis, p53 signaling pathway and MAPKKK cascade possibly constituting alternative or subordinate pathways of hematotoxicity and immune toxicity. Gene ontology analysis methods including biological process, cellular components, molecular function and KEGG pathway thus provide a fundamental basis of the molecular pathways through BEs exposure in human lymphoma cells. This may provides a valuable information to do further analysis to explore the mechanism of BE induced hematotoxicity.