Browse > Article
http://dx.doi.org/10.14348/molcells.2020.2300

Flagellin-Stimulated Production of Interferon-β Promotes Anti-Flagellin IgG2c and IgA Responses  

Kang, Wondae (Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology)
Park, Areum (Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology)
Huh, Ji-Won (Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology)
You, Gihoon (Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology)
Jung, Da-Jung (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology)
Song, Manki (International Vaccine Institute)
Lee, Heung Kyu (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology)
Kim, You-Me (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology)
Abstract
Flagellin, a major structural protein of the flagellum found in all motile bacteria, activates the TLR5- or NLRC4 inflammasome-dependent signaling pathway to induce innate immune responses. Flagellin can also serve as a specific antigen for the adaptive immune system and stimulate anti-flagellin antibody responses. Failure to recognize commensal-derived flagellin in TLR5-deficient mice leads to the reduction in anti-flagellin IgA antibodies at steady state and causes microbial dysbiosis and mucosal barrier breach by flagellated bacteria to promote chronic intestinal inflammation. Despite the important role of anti-flagellin antibodies in maintaining the intestinal homeostasis, regulatory mechanisms underlying the flagellin-specific antibody responses are not well understood. In this study, we show that flagellin induces interferon-β (IFN-β) production and subsequently activates type I IFN receptor signaling in a TLR5- and MyD88-dependent manner in vitro and in vivo. Internalization of TLR5 from the plasma membrane to the acidic environment of endolysosomes was required for the production of IFN-β, but not for other pro-inflammatory cytokines. In addition, we found that anti-flagellin IgG2c and IgA responses were severely impaired in interferon-alpha receptor 1 (IFNAR1)-deficient mice, suggesting that IFN-β produced by the flagellin stimulation regulates anti-flagellin antibody class switching. Our findings shed a new light on the regulation of flagellin-mediated immune activation and may help find new strategies to promote the intestinal health and develop mucosal vaccines.
Keywords
anti-flagellin antibody; flagellin; IgA; interferon-${\beta}$; Toll-like receptor 5;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cullender, T.C., Chassaing, B., Janzon, A., Kumar, K., Muller, C.E., Werner, J.J., Angenent, L.T., Bell, M.E., Hay, A.G., Peterson, D.A., et al. (2013). Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 14, 571-581.   DOI
2 Doyle, S., Vaidya, S., O'Connell, R., Dadgostar, H., Dempsey, P., Wu, T., Rao, G., Sun, R., Haberland, M., Modlin, R., et al. (2002). IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251-263.   DOI
3 Eaves-Pyles, T., Bu, H.F., Tan, X.D., Cong, Y.Z., Patel, J., Davey, R.A., and Strasser, J.E. (2011). Luminal-applied flagellin is internalized by polarized intestinal epithelial cells and elicits immune responses via the TLR5 dependent mechanism. PLoS One 6, e24869.   DOI
4 Felix, G., Duran, J.D., Volko, S., and Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265-276.   DOI
5 Fitzgerald, K.A., Rowe, D.C., Barnes, B.J., Caffrey, D.R., Visintin, A., Latz, E., Monks, B., Pitha, P.M., and Golenbock, D.T. (2003). LPS-TLR4 signaling to IRF-3/7 and NF-kappa B involves the toll adapters TRAM and TRIF. J. Exp. Med. 198, 1043-1055.   DOI
6 Flores-Langarica, A., Marshall, J.L., Hitchcock, J., Cook, C., Jobanputra, J., Bobat, S., Ross, E.A., Coughlan, R.E., Henderson, I.R., Uematsu, S., et al. (2012). Systemic flagellin immunization stimulates mucosal CD103(+) dendritic cells and drives Foxp3(+) regulatory T cell and IgA responses in the mesenteric lymph node. J. Immunol. 189, 5745-5754.   DOI
7 Franchi, L., Amer, A., Body-Malapel, M., Kanneganti, T.D., Ozoren, N., Jagirdar, R., Inohara, N., Vandenabeele, P., Bertin, J., Coyle, A., et al. (2006). Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat. Immunol. 7, 576-582.   DOI
8 Ha, H., Lee, J.H., Kim, H.N., Kwak, H.B., Kim, H.M., Lee, S.E., Rhee, J.H., Kim, H.H., and Lee, Z.H. (2008). Stimulation by TLR5 modulates osteoclast differentiation through STAT1/IFN-beta. J. Immunol. 180, 1382-1389.   DOI
9 Gewirtz, A.T., Navas, T.A., Lyons, S., Godowski, P.J., and Madara, J.L. (2001). Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882-1885.   DOI
10 Gomez-Gomez, L. and Boller, T. (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003-1011.   DOI
11 Hacker, H., Mischak, H., Miethke, T., Liptay, S., Schmid, R., Sparwasser, T., Heeg, K., Lipford, G.B., and Wagner, H. (1998). CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 17, 6230-6240.   DOI
12 Hajam, I.A., Dar, P.A., Shahnawaz, I., Jaume, J.C., and Lee, J.H. (2017). Bacterial flagellin-a potent immunomodulatory agent. Exp. Mol. Med. 49, e373.   DOI
13 Halff, E.F., Diebolder, C.A., Versteeg, M., Schouten, A., Brondijk, T.H., and Huizinga, E.G. (2012). Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin. J. Biol. Chem. 287, 38460-38472.   DOI
14 Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng, J.K., Akira, S., Underhill, D.M., and Aderem, A. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099-1103.   DOI
15 Hemont, C., Neel, A., Heslan, M., Braudeau, C., and Josien, R. (2013). Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness. J. Leukoc. Biol. 93, 599-609.   DOI
16 Jang, M.H., Sougawa, N., Tanaka, T., Hirata, T., Hiroi, T., Tohya, K., Guo, Z., Umemoto, E., Ebisuno, Y., Yang, B.G., et al. (2006). CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J. Immunol. 176, 803-810.   DOI
17 Honda, K., Yanai, H., Mizutani, T., Negishi, H., Shimada, N., Suzuki, N., Ohba, Y., Takaoka, A., Yeh, W.C., and Taniguchi, T. (2004). Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc. Natl. Acad. Sci. U. S. A. 101, 15416-15421.   DOI
18 Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., and Akira, S. (1999). Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749-3752.
19 Hu, Z., Zhou, Q., Zhang, C., Fan, S., Cheng, W., Zhao, Y., Shao, F., Wang, H.W., Sui, S.F., and Chai, J. (2015). Structural and biochemical basis for induced self-propagation of NLRC4. Science 350, 399-404.   DOI
20 Huh, J.W., Shibata, T., Hwang, M., Kwon, E.H., Jang, M.S., Fukui, R., Kanno, A., Jung, D.J., Jang, M.H., Miyake, K., et al. (2014). UNC93B1 is essential for the plasma membrane localization and signaling of Toll-like receptor 5. Proc. Natl. Acad. Sci. U. S. A. 111, 7072-7077.   DOI
21 Kagan, J.C., Su, T., Horng, T., Chow, A., Akira, S., and Medzhitov, R. (2008). TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat. Immunol. 9, 361-368.   DOI
22 Kawai, T., Sato, S., Ishii, K.J., Coban, C., Hemmi, H., Yamamoto, M., Terai, K., Matsuda, M., Inoue, J., Uematsu, S., et al. (2004). Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5, 1061-1068.   DOI
23 Kim, J., Huh, J., Hwang, M., Kwon, E.H., Jung, D.J., Brinkmann, M.M., Jang, M.H., Ploegh, H.L., and Kim, Y.M. (2013). Acidic amino acid residues in the juxtamembrane region of the nucleotide-sensing TLRs are important for UNC93B1 binding and signaling. J. Immunol. 190, 5287-5295.   DOI
24 Kofoed, E.M. and Vance, R.E. (2011). Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477, 592-595.   DOI
25 Langer, J.A. and Pestka, S. (1988). Interferon receptors. Immunol. Today 9, 393-400.   DOI
26 Letran, S.E., Lee, S.J., Atif, S.M., Uematsu, S., Akira, S., and McSorley, S.J. (2011). TLR5 functions as an endocytic receptor to enhance flagellin-specific adaptive immunity. Eur. J. Immunol. 41, 29-38.   DOI
27 Marie, I., Durbin, J.E., and Levy, D.E. (1998). Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J. 17, 6660-6669.   DOI
28 Lopez-Yglesias, A.H., Zhao, X., Quarles, E.K., Lai, M.A., VandenBos, T., Strong, R.K., and Smith, K.D. (2014). Flagellin induces antibody responses through a TLR5-and inflammasome-independent pathway. J. Immunol. 192, 1587-1596.   DOI
29 Lowy, J. and McDonough, M.W. (1964). Structure of filaments produced by re-aggregation of Salmonella flagellin. Nature 204, 125-127.   DOI
30 Lund, J., Sato, A., Akira, S., Medzhitov, R., and Iwasaki, A. (2003). Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198, 513-520.   DOI
31 McSorley, S.J., Ehst, B.D., Yu, Y., and Gewirtz, A.T. (2002). Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J. Immunol. 169, 3914-3919.   DOI
32 Means, T.K., Hayashi, F., Smith, K.D., Aderem, A., and Luster, A.D. (2003). The toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J. Immunol. 170, 5165-5175.   DOI
33 Miao, E.A., Alpuche-Aranda, C.M., Dors, M., Clark, A.E., Bader, M.W., Miller, S.I., and Aderem, A. (2006). Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat. Immunol. 7, 569-575.   DOI
34 Muller, U., Steinhoff, U., Reis, L.F., Hemmi, S., Pavlovic, J., Zinkernagel, R.M., and Aguet, M. (1994). Functional role of type I and type II interferons in antiviral defense. Science 264, 1918-1921.   DOI
35 Carvalho, F.A., Koren, O., Goodrich, J.K., Johansson, M.E., Nalbantoglu, I., Aitken, J.D., Su, Y., Chassaing, B., Walters, W.A., Gonzalez, A., et al. (2012). Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe 12, 139-152.   DOI
36 Adachi, O., Kawai, T., Takeda, K., Matsumoto, M., Tsutsui, H., Sakagami, M., Nakanishi, K., and Akira, S. (1998). Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143-150.   DOI
37 Atif, S.M., Lee, S.J., Li, L.X., Uematsu, S., Akira, S., Gorjestani, S., Lin, X., Schweighoffer, E., Tybulewicz, V.L.J., and McSorley, S.J. (2015). Rapid CD4(+) T-cell responses to bacterial flagellin require dendritic cell expression of Syk and CARD9. Eur. J. Immunol. 45, 513-524.   DOI
38 Aubry, C., Corr, S.C., Wienerroither, S., Goulard, C., Jones, R., Jamieson, A.M., Decker, T., O'Neill, L.A.J., Dussurget, O., and Cossart, P. (2012). Both TLR2 and TRIF contribute to interferon-beta production during Listeria infection. PLoS One 7, e33299.   DOI
39 Choi, Y.J., Im, E., Chung, H.K., Pothoulakis, C., and Rhee, S.H. (2010). TRIF mediates toll-like receptor 5-induced signaling in intestinal epithelial cells. J. Biol. Chem. 285, 37570-37578.   DOI
40 Ciacci-Woolwine, F., Blomfield, I.C., Richardson, S.H., and Mizel, S.B. (1998). Salmonella flagellin induces tumor necrosis factor alpha in a human promonocytic cell line. Infect. Immun. 66, 1127-1134.   DOI
41 Sanders, C.J., Yu, Y., Moore, D.A., 3rd, Williams, I.R., and Gewirtz, A.T. (2006). Humoral immune response to flagellin requires T cells and activation of innate immunity. J. Immunol. 177, 2810-2818.   DOI
42 Odendall, C., Voak, A.A., and Kagan, J.C. (2017). Type III IFNs are commonly induced by bacteria-sensing TLRs and reinforce epithelial barriers during infection. J. Immunol. 199, 3270-3279.   DOI
43 Oh, J.Z., Ravindran, R., Chassaing, B., Carvalho, F.A., Maddur, M.S., Bower, M., Hakimpour, P., Gill, K.P., Nakaya, H.I., Yarovinsky, F., et al. (2014). TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 41, 478-492.   DOI
44 Parlato, S., Santini, S.M., Lapenta, C., Di Pucchio, T., Logozzi, M., Spada, M., Glammarioli, A.M., Malorni, W., Fais, S., and Belardelli, F. (2001). Expression of CCR-7, MIP-3 beta, and Th-1 chemokines in type IIFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. Blood 98, 3022-3029.   DOI
45 Sato, M., Hata, N., Asagiri, M., Nakaya, T., Taniguchi, T., and Tanaka, N. (1998). Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett. 441, 106-110.   DOI
46 Scheu, S., Dresing, P., and Locksley, R.M. (2008). Visualization of IFNbeta production by plasmacytoid versus conventional dendritic cells under specific stimulation conditions in vivo. Proc. Natl. Acad. Sci. U. S. A. 105, 20416-20421.   DOI
47 Shibata, T., Takemura, N., Motoi, Y., Goto, Y., Karuppuchamy, T., Izawa, K., Li, X., Akashi-Takamura, S., Tanimura, N., Kunisawa, J., et al. (2012). PRAT4A-dependent expression of cell surface TLR5 on neutrophils, classical monocytes and dendritic cells. Int. Immunol. 24, 613-623.   DOI
48 Thompson, J.M., Whitmore, A.C., Staats, H.F., and Johnston, R. (2008). The contribution of type I interferon signaling to immunity induced by alphavirus replicon vaccines. Vaccine 26, 4998-5003.   DOI
49 Swanson, C.L., Wilson, T.J., Strauch, P., Colonna, M., Pelanda, R., and Torres, R.M. (2010). Type I IFN enhances follicular B cell contribution to the T cell-independent antibody response. J. Exp. Med. 207, 1485-1500.   DOI
50 Takaoka, A., Yanai, H., Kondo, S., Duncan, G., Negishi, H., Mizutani, T., Kano, S., Honda, K., Ohba, Y., Mak, T.W., et al. (2005). Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434, 243-249.   DOI
51 Uematsu, S., Fujimoto, K., Jang, M.H., Yang, B.G., Jung, Y.J., Nishiyama, M., Sato, S., Tsujimura, T., Yamamoto, M., Yokota, Y., et al. (2008). Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 9, 769-776.   DOI
52 Uematsu, S., Jang, M.H., Chevrier, N., Guo, Z.J., Kumagai, Y., Yamamoto, M., Kato, H., Sougawa, N., Matsui, H., Kuwata, H., et al. (2006). Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c(+) lamina propria cells. Nat. Immunol. 7, 868-874.   DOI
53 Vijay-Kumar, M., Aitken, J.D., and Gewirtz, A.T. (2008). Toll like receptor-5: protecting the gut from enteric microbes. Semin. Immunopathol. 30, 11-21.   DOI
54 Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., et al. (2003). Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640-643.   DOI
55 Zhao, Y., Yang, J., Shi, J., Gong, Y.N., Lu, Q., Xu, H., Liu, L., and Shao, F. (2011). The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596-600.   DOI
56 Yoon, S.I., Kurnasov, O., Natarajan, V., Hong, M., Gudkov, A.V., Osterman, A.L., and Wilson, I.A. (2012). Structural basis of TLR5-flagellin recognition and signaling. Science 335, 859-864.   DOI
57 Zanoni, I., Ostuni, R., Marek, L.R., Barresi, S., Barbalat, R., Barton, G.M., Granucci, F., and Kagan, J.C. (2011). CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147, 868-880.   DOI
58 Zhang, L., Chen, S., Ruan, J., Wu, J., Tong, A.B., Yin, Q., Li, Y., David, L., Lu, A., Wang, W.L., et al. (2015). Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350, 404-409.   DOI