Browse > Article
http://dx.doi.org/10.15230/SCSK.2017.43.2.103

Anti-Inflammatory and Anti-allergic Effects of Gnaphalium affine Extract  

Roh, Kyung-Baeg (Biospectrum Life Science Institute)
Lee, Jung-A (Biospectrum Life Science Institute)
Park, Junho (Skincure Life Science Institute)
Jung, Kwangseon (Skincure Life Science Institute)
Jung, Eunsun (Biospectrum Life Science Institute)
Park, Deokhoon (Biospectrum Life Science Institute)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.43, no.2, 2017 , pp. 103-114 More about this Journal
Abstract
Gnaphalium affine D. DON (GA) has been used as a vegetable as well as a folk medicine in East Asia. The antioxidant and anti-complementary activity of GA extract (GAE) has also been reported. However, little is known about its anti-inflammatory and anti-allergic effect and mechanism of action. In this study, we evaluated the inhibitory effects of GAE on the production of inflammatory mediators such as NO, $PGE_2$, TLR4, eotaxin-1 and histamine. Our results suggest that GAE inhibits the production of NO and $PGE_2$ by inhibiting transcriptional activation via the involvement of iNOS and COX-2. The LPS-induced expression of Toll-like receptor 4 (TLR4) was also attenuated. In addition, GAE inhibited A23187-induced histamine release from MC/9 mast cells. It also inhibited the production of eotaxin-1 induced by IL-4. Collectively, these results suggest that GAE may have considerable potential as a cosmetic ingredient with anti-inflammatory and anti-allergic properties.
Keywords
Gnaphalium affine D. DON; nitric oxide; prostaglandin $E_2$; eotaxin-1; histamine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. W. Jiang, K. M. Lau, P. M. Hon, T. C. Mak, K. S. Woo, and K. P. Fung, Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza, Curr. Med. Chem., 12(2), 237 (2005).   DOI
2 F. M. da Cunha, D. Duma, J. Assreuy, F. C. Buzzi, R. Niero, M. M. Campos, and J. B. Calixto, Caffeic acid derivatives: in vitro and in vivo anti-inflammatory properties, Free Radic. Res., 38(11), 1241 (2004).   DOI
3 M. A. Hossen, T. Inoue, Y. Shinmei, K. Minami, Y. Fujii, and C. Kamei, Caffeic acid inhibits compound 48/80-induced allergic symptoms in mice, Biol. Pharm. Bull., 29(1), 64 (2006).   DOI
4 M. Lopez-Lazaro, Distribution and biological activities of the flavonoid luteolin, Mini Rev. Med. Chem., 9(1), 31 (2009).   DOI
5 M. Kimata, N. Inagaki, and H. Nagai, Effects of luteolin and other flavonoids on IgE-mediated allergic reactions, Planta Med., 66(1), 25 (2000).   DOI
6 J. H. Lee, H. Y. Zhou, S. Y. Cho, Y. S. Kim, Y. S. Lee, and C. S. Jeong, Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules, Arch. Pharm. Res., 30(10), 1318 (2007).   DOI
7 R. R. Li, L. L. Pang, Q. Du, Y. Shi, W. J. Dai, and K. S. Yin, Apigenin inhibits allergen-induced airway inflammation and switches immune response in a murine model of asthma, Immunopharmacol. Immunotoxicol., 32(3), 364 (2010).   DOI
8 R. Mogana, K. Teng-Jin, and C. Wiart, Anti-inflammatory, anticholinesterase, and antioxidant potential of scopoletin isolated from Canarium patentinervium Miq. (Burseraceae Kunth), Evid. Based Complement. Alternat. Med., 2013, 734824 (2013).
9 J. C. Chow, D. W. Young, D. T. Golenbock, W. J. Christ, and F. Gusovsky, Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction, J. Biol. Chem., 274(16), 10689 (1999).   DOI
10 B. Kaminska, MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits, Biochim. Biophys. Acta., 1754(1-2), 253 (2005).   DOI
11 Y. Bellik, S. M. Hammoudi, F. Abdellah, M. Iguer-Ouada, and L. Boukraa, Phytochemicals to prevent inflammation and allergy, Recent Pat. Inflamm. Allergy Drug Discov., 6(2), 147 (2012).   DOI
12 P. Cos, A. J. Vlietinck, D. V. Berghe, and L. Maes, Anti-infective potential of natural products: how to develop a stronger in vitro 'proof-of-concept', J. Ethnopharmacol., 106(3), 290 (2006).   DOI
13 J. V. Formica and W. Regelson, Review of the biology of quercetin and related bio-flavonoids, Food Chem. Toxicol., 33(12), 1061 (1995).   DOI
14 S. J. Hwang, Y. W. Kim, Y. Park, H. J. Lee, and K. W. Kim, Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells, Inflamm. Res., 63(1), 81 (2014).   DOI
15 N. S. Bryan and M. B. Grisham, Methods to detect nitric oxide and its metabolites in biological samples, Free Radic. Biol. Med., 43(5), 645 (2007).   DOI
16 A. Farah, M. Monteiro, C. M. Donangelo, and S. Lafay, Chlorogenic acids from green coffee extract are highly bioavailable in humans, J. Nutr., 138(12), 2309 (2008).   DOI
17 H. D. Qin, Y. Q. Shi, Z. H. Liu, Z. G. Li, H. S. Wang, H. Wang, and Z. P. Liu, Effect of chlorogenic acid on mast cell-dependent anaphylactic reaction, Int. Immunopharmacol., 10(9), 1135 (2010).   DOI
18 C. A. Singer, K. J. Baker, A. McCaffrey, D. P. AuCoin, M. A. Dechert, and W. T. Gerthoffer, p38 MAPK and NF-kappaB mediate COX-2 expression in human airway myocytes, Am. J. Physiol. Lung Cell. Mol. Physiol., 285(5), L1087 (2003).   DOI
19 K. Amin, The role of mast cells in allergic inflammation. Respir. Med., 106(1), 9 (2012).   DOI
20 P. D. Collins, S. Marleau, D. A. Griffiths-Johnson, P. J. Jose, and T. J. Williams, Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo, J. Exp. Med., 182(4), 1169 (1995).   DOI
21 K. B. Roh, H. Kim, S. Shin, Y. S. Kim, J. A. Lee, M. O. Kim, E. Jung, J. Lee, and D. Park, Anti-inflammatory effects of Zea mays L. husk extracts, BMC Complement. Altern. Med., 16(1), 298 (2016).   DOI
22 K. B. Roh, I. H. Kim, Y. S. Kim, M. Lee, J. A. Lee, E. Jung, and D. Park, Synephrine inhibits eotaxin-1 expression via the STAT6 signaling pathway, Molecules, 19(8), 11883 (2014).   DOI
23 T. Johansen, Mechanism of histamine release from rat mast cells induced by the ionophore A23187: effects of calcium and temperature, Br. J. Pharmacol., 63(4), 643 (1978).   DOI
24 N. McCartney-Francis, J. B. Allen, D. E. Mizel, J. E. Albina, Q. W. Xie, C. F. Nathan, and S. M. Wahl, Suppression of arthritis by an inhibitor of nitric oxide synthase, J. Exp. Med., 178(2), 749 (1993).   DOI
25 S. Akira, T. Taga, and T. Kishimoto, Interleukin-6 in biology and medicine, Adv. Immunol., 54, 1 (1993).
26 E. Ricciotti and G. A. FitzGerald, Prostaglandins and inflammation, Arterioscler. Thromb. Vasc. Biol., 31(5), 986 (2011).   DOI
27 M. Morimoto, S. Kumeda, and K. Komai, Insect antifeedant flavonoids from Gnaphalium affine D. Don, J. Agric. Food Chem., 48(5), 1888 (2000).   DOI
28 W. C. Zeng, R. X. Zhu, L. R. Jia, H. Gao, Y. Zheng, and Q. Sun, Chemical composition, antimicrobial and antioxidant activities of essential oil from Gnaphlium affine, Food Chem. Toxicol., 49(6), 1322 (2011).   DOI
29 G. Rojas, J. Lévaro, J. Tortoriello, and V. Navarro, Antimicrobial evaluation of certain plants used in Mexican traditional medicine for the treatment of respiratory diseases, J. Ethnopharmacol., 74(1), 97 (2001).   DOI
30 C. D. Dumitru, J. D. Ceci, C. Tsatsanis, D. Kontoyiannis, K. Stamatakis, J. H. Lin, C. Patriotis, N. A. Jenkins, N. G. Copeland, G. Kollias, and P. N. Tsichlis, TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway, Cell, 103(7), 1071 (2000).   DOI
31 M. Hartlage-Rubsamen, R. Lemke, and R. Schliebs, Interleukin-1 beta, inducible nitric oxide synthase, and nuclear factor-kappaB are induced in morphologically distinct microglia after rat hippocampal lipopolysaccharide/interferon-gamma injection, J. Neurosci. Res., 57(3), 388 (1999).   DOI
32 B. Yu, J. Du, Y. Z. Zhang, and Z. S. Yao, Experimental study on antitussive and expectorant effects of cudweed, J. Zhejiang Univ. Tradit. Chin. Med., 30, 352 (2006).
33 Z. Xi, W. Chen, Z. Wu, Y. Wang, P. Zeng, G. Zhao, X. Li, and L. Sun, Anti-complementary activity of flavonoids from Gnaphalium affine D. Don, Food Chem., 130(1), 165 (2012).   DOI
34 N. R. Bhat, D. L. Feinstein, Q. Shen, and A. N. Bhat, p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor kappa B, cAMP response element-binding protein, CCAAT/enhancer- binding protein-beta, and activating transcription factor-2, J. Biol. Chem., 277(33), 29584 (2002).   DOI
35 C. H. Woo, J. H. Lim, and J. H. Kim, Lipopolysaccharide Induces matrix metalloproteinase-9 expression via a mitochondrial reactive oxygen species-p38 kinase-activator protein-1 pathway in Raw 264.7 cells, J. Immunol., 173(11), 6973 (2004).   DOI
36 S. F. Kim, D. A. Huri, and S. H. Snyder, Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2, Science, 310(5756), 1966 (2005).   DOI
37 J. da Silva Correia, K. Soldau, U. Christen, P. S. Tobias, and R. J. Ulevitch, Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex transfer from CD14 to TLR4 and MD-2, J. Biol. Chem., 276(24), 21129 (2001).   DOI
38 K. Triantafilou and M. Triantafilou, Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster, Trends Immunol., 23(6), 301 (2002).   DOI
39 T. Kawai and S. Akira, TLR signaling, Cell Death Differ., 13(5), 816 (2006).   DOI