• Title/Summary/Keyword: titanium surface

Search Result 1,169, Processing Time 0.027 seconds

Effects of acid-treatment conditions on the surface properties of the RBM treated titanium implants (산-처리 조건이 RBM처리한 티타늄 임플란트의 표면 특성에 주는 영향)

  • Lee, Han-Ah;Seok, Soohwang;Lee, Sang-Hyeok;Lim, Bum-Soon
    • Korean Journal of Dental Materials
    • /
    • v.45 no.4
    • /
    • pp.257-274
    • /
    • 2018
  • The purpose of this study was to evaluate the effect of acid-treatment conditions on the surface properties of the RBM (Resorbable Blast Media) treated titanium. Disk typed cp-titanium specimens were prepared and RBM treatments was performed with calcium phosphate ceramic powder. Acid solution was mixed using HCl, $H_2SO_4$ and deionized water with 4 different volume fraction. The RBM treated titanium was acid treated with different acid solutions at 3 different temperatures and for 3 different periods. After acid-treatments, samples were cleaned with 1 % Solujet solution for 30 min and deionized water for 30 min using ultrasonic cleanser, then dried in the electrical oven ($37^{\circ}C$). Weight of samples before and after acid-treatment were measured using electric balance. Surface roughness was estimated using a confocal laser scanning microscopy, crystal phase in the surface of sample was analyzed using X-ray diffractometer. Surface morphology and components were evaluated using Scanning Electron Microscope (SEM) with Energy Dispersive X-ray spectroscopy (EDX) and X-ray Photoemission Spectroscopy (XPS). Values of the weight changes and surface roughness were statistically analyzed using Tukey-multiple comparison test (p=0.05). Weight change after acid treatments were significantly increased with increasing the concentration of $H_2SO_4$ and temperature of acid-solution. Acid-treatment conditions (concentration of $H_2SO_4$, temperature and time) did not produce consistent effects on the surface roughness, it showed the scattered results. From XRD analysis, formation of titanium hydrides in the titanium surface were observed in all specimens treated with acid-solutions. From XPS analysis, thin titanium oxide layer in the acid-treated specimens could be evaluated. Acid solution with $90^{\circ}C$ showed the strong effect on the titanium surface, it should be treated with caution to avoid the over-etching process.

Surface Characteristics and Biocompatibility of Titanium Coated with Dentin-derived Hydroxyapatite

  • Kim, Hae-Jin;Son, Mee-Kyung;Lee, Kyung-Ku;Lee, Bo-Ah;Kim, Young-Joon
    • International Journal of Oral Biology
    • /
    • v.37 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • The aim of this study was to evaluate surface characteristics and biological properties of the dentin -derived hydroxyapatite (HA) coating on titanium substrate. Dentinderived HA was obtained from extracted human teeth using a calcination method at $850^{\circ}C$. The commercially pure titanium (cp-Ti, ASTM Grade II) was used as a metallic substrate and a radio frequency magnetron sputtering method was employed as a coating method. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were utilized to investigate the coating aspects and composition. Atomic forced microscopy (AFM) and a surface profiler were used to assess the surface morphology and roughness. Corrosion tests were performed in phosphate-buffered saline at a $36.5{\pm}1^{\circ}C$ in order to determine the corrosion behavior of the uncoated and coated specimens. The biocompatibility of dentin-derived HA coated specimens with fetal rat calvarial cells and human gingival fibroblasts was assessed by SEM and cell proliferation analysis. The results showed that the dentin-derived HA coatings appeared to cover thinly and homogeneously the surfaces without changing of the titanium substrate. The EDX analysis of this the coating surface indicated the presence of Ca and P elements. The mean surface roughness of cp-Ti and dentin-derived coating specimens was $0.27{\mu}m$ and, $1.7{\mu}m$, respectively. Corrosion tests indicated a stable passive film of the dentin-derived HA coating specimens. SEM observations of fetal rat calvarial cells and human fibroblast cells on coated surfaces showed that the cells proliferated and developed a network of dense interconnections. The cells on all specimens proliferated actively within the culture period, showing good cell viability. At day 1 and 3, dentin-derived coating specimens showed 89% and 93% cell viability, respectively, when normalized to cp-Ti specimens. These results suggest that dentin-derived HA coating using the RF magnetron sputtering method has good surface characteristics and biocompatibility.

Effect of Blasted or Anodized Titanium Surface Roughness on Adhesion and Differentiation of Osteoblasts (블라스팅과 양극산화된 티타늄 표면이 조골세포의 부착 및 분화에 미치는 영향)

  • Park, Chan-Jin;Cho, Lee-Ra;Yi, Yang-Jin;Ko, Sung-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.3
    • /
    • pp.261-270
    • /
    • 2006
  • The success of an implant is determined by its integration into the tissue surrounding the biomaterial. Surface roughness is considered to influence the behavior of adherent cells. The aim of this in vitro study was to determine the effect of surface roughness on Saos-2 osteoblast-like cells. Titanium disks, blasted with $75{\mu}m$ aluminum oxide particles and anodic oxidized and machined titanium disks were prepared. Saos-2 were plated on the disks at a density of 50,000 cells per well in 48-well dishes. After 1 hour, 1 day, 6 days cell numbers were counted. One day, 6 days after plating, alkaline phosphatase(ALPase) activity was determined. Compared to experimental groups, the number of cells was significantly higher on control group. The stimulatory effect of surface roughness on ALPase was more pronounced on the experimental groups than on control group. These results demonstrate that surface roughness alters proliferation and differentiation of osteoblasts. The results also suggest that implant surface roughness may play a role in determining phenotypic expression of cells.

Effect of Electron Irradiation on the Titanium Aluminium Nitride Thick Films (Titanium Aluminium Nitride 후막의 전자-빔 조사 효과)

  • Choe, Su-Hyeon;Heo, Sung-Bo;Kong, Young-Min;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.280-284
    • /
    • 2020
  • Electron beam irradiation is widely used as a type of surface modification technology to advance surface properties. In this study, the effect of electron beam irradiation on properties, such as surface hardness, wear resistance, roughness, and critical load of Titanium Aluminium nitride (TiAlN) films was investigated. TiAlN films were deposited on the SKD-61 substrate by using cathode arc ion plating. After deposition, the films were bombarded with intense electron beam for 10 minutes. The surface hardness was increased up to 4520 HV at electron irradiation energy of 1500 eV. In addition, surface root mean square (RMS) roughness of the films irradiated at 1500 eV shows the lowest roughness of 484 nm in this study.

Comparative evaluation of roughness of titanium surfaces treated by different hygiene instruments

  • Unursaikhan, Otgonbayar;Lee, Jung-Seok;Cha, Jae-Kook;Park, Jung-Chul;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.3
    • /
    • pp.88-94
    • /
    • 2012
  • Purpose: The use of appropriate instruments to clean surfaces with minimal change, is critical for the successful maintenance of a dental implant. However, there is no consensus about the type and methodology for such instruments. The aim of this study was to characterize changes in the roughness of titanium surfaces treated by various scaling instruments. Methods: Thirty-seven identical disks (5 mm in diameter) were investigated in this study. The specimens were divided into eight groups according to the types of instrumentation and the angle of application. Ultrasonic scaling systems were applied on a titanium disk to simulate standard clinical conditions. The equipment included a piezoelectric ultrasonic scaler with a newly developed metallic tip (NS group), a piezoelectric ultrasonic scaler with a conventional tip (CS group), a piezoelectric root planer ultrasonic scaler with a conventional tip (PR group), and a plastic hand curette (PH group). In addition, the sites treated using piezoelectric ultrasonic scaler systems were divided two sub-groups: 15 and 45 degrees. The treated titanium surfaces were observed by scanning electron microscopy (SEM), and the average surface roughness (Ra) and mean roughness profile depth (Rz) were measured with a profilometer. Results: SEM no significant changes in the titanium surfaces in the NS group, regardless of the angle of application. The PH group also showed no marked changes to the titanium surface, although some smoothening was observed. All CS and PR sites lost their original texture and showed irregular surfaces in SEM analysis. The profilometer analysis demonstrated that the roughness values (Ra and Rz) of the titanium surfaces increased in all, except the PH and NS groups, which showed roughness decreases relative to the untreated control group. The Ra value differed significantly between the NS and PR groups (P<0.05). Conclusions: The results of this study indicated that changes in or damage to titanium surfaces might be more affected by the hardness of the scaler tip than by the application method. Within the limitations of this study, the newly developed metallic scaler tip might be especially suitable for peri-implant surface decontamination, due to its limited effects on the titanium surface.

Optimum Machining Condition Determination for Pedicle Screw using Experimental Design Method (실험계획법에 의한 척추경 나사의 최적 절삭조건 결정)

  • Jang, Sung-Min;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.3-9
    • /
    • 2004
  • The main objectives of this paper are to determine optimum cutting conditions using experimental design method to manufacture pedicle screws. Generally, titanium alloys are known as difficult-to cut materials. In the machining of titanium alloy, high cutting temperature and strong chemical affinity between the tool and the work material are generated because of Its low thermal conductivity and chemical reactivity. Such phenomenon cause increase of tool wear and deterioration of surface quality. Thus, in this paper, required experimental investigations are performed to evaluate the machinability of titanium materials With tungsten carbide tools Required simulation and experiments are performed, and the results are investigated.

  • PDF

Surface and Optical Characteristics of Cobalt Dopped-titanium Oxide Film Fabricated by Water Spray Pyrolysis Technique (습식 분무 열분해 방법으로 제조한 코발트 도핑된 티타늄 산화막의 표면 및 광학적 특성)

  • Song Ho-Jun;Park Yeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.209-215
    • /
    • 2005
  • Titanium dioxide films $(TiO_2)$ doped cobalt transition metal were prepared on titanium metal by water spray pyrolysis technique. Micro-morphology, crystalline structure, chemical composition and binding state of sample groups were evaluated using field emission scanning microscope(FE-SEM), X-ray diffractometer(XRD), Raman spectrometer, X-ray photoelectron spectrometer(XPS). $TiO_2$ films of rutile structure were predominately formed on all sample groups and $Ti_2O_3$ oxide was coexisted on the surface of cobalt doped-sample groups. The optical absorption peaks measured by using UV-VIS-NIR spectrophotometer were observed at specific wavelength region in sample groups doped cobalt ion. This result could be analyzed by introducing crystal field theory.

Gas Nitriding Mechanism in Titanium Powder Injection Molded Products

  • Osada, Toshiko;Miura, Hideshi;Yamagami, Takanobu;Nishiyabu, Kazuaki;Tanaka, Shigeo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.773-774
    • /
    • 2006
  • Gas surface treatment is considered to be effective for titanium because of its high reactivity. In this study, we investigated the gas nitriding mechanism in titanium sintered parts produced by metal powder injection molding (MIM) process. The microstructure and nitrogen content of sintered MIM parts were greatly affected by nitriding conditions. Nitriding process strongly depended on the specimen size, for example, the size of micro metal injection molding (${\mu}-MIM$) product is so small and the specific surface is so large that the mechanical and functional properties can be modified by nitriding.

  • PDF

Establishment of Laser Sintering Technique for Titanium Powder

  • Miura, Hideshi;Takemasu, Teruie;Uemura, Makoto;Otsu, Masaaki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.244-245
    • /
    • 2006
  • This paper investigates the characteristic of single-layered and multi-layered compacts made by selective laser sintering using titanium powder (TILOP45 and TILOP150, Sumitomo Titanium Corp.) There were few defects in smooth surface of laser sintered specimen in vacuum as compared to the laser sintered specimen in argon. Maximum tensile strength of singlelayered compact was about 200MPa. Multi-layered compacts show the density of around 75% and the adhesive bonding was not observed between layers, resulted in 70MPa of maximum bending strength and 50MPa of maximum tensile strength.

  • PDF

Study on the Thermal and Electrical Conductivity Properties of Titanium-sputtered Materials

  • Han, Hye Ree
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.3
    • /
    • pp.530-544
    • /
    • 2022
  • Titanium exhibits substantial corrosion resistance, strength, and ductility, with a specific gravity of approximately 4.5 and a melting point of approximately 1800℃. It is currently used in aircraft parts and space development. This study considered the thermal characteristics, stealth effects of infrared thermal imaging cameras, electromagnetic shielding, and electrical conductivity of Ti-sputtered materials. Base materials of different densities and types were treated using titanium sputtering. Infrared thermal imaging showed a better stealth effect when the titanium layer was directed toward the outside. The film sample presented a better stealth effect than the fabrics did. In each of the samples subjected to titanium sputtering, when the titanium layer was directed outward, the untreated sample or exposed titanium layer showed surface temperatures lower than those of the samples with the titanium layer oriented toward the heat source. Additionally, after the titanium sputtering treatment, the films conducted electricity (low resistance) better than the fabrics did. All titanium-sputtered specimens presented reduced electromagnetic wave transmission and significantly reduced infrared transmission. These results are expected to apply to military uniforms (soldiers' protective clothing to gain the upper hand on the battlefield), medical sensors, multifunctional intelligent textiles and etc.