DOI QR코드

DOI QR Code

Effects of acid-treatment conditions on the surface properties of the RBM treated titanium implants

산-처리 조건이 RBM처리한 티타늄 임플란트의 표면 특성에 주는 영향

  • Lee, Han-Ah (Department of Dental Biomaterials Science, School of Dentistry, Seoul National University) ;
  • Seok, Soohwang (Department of Dental Biomaterials Science, School of Dentistry, Seoul National University) ;
  • Lee, Sang-Hyeok (Department of Dental Biomaterials Science, School of Dentistry, Seoul National University) ;
  • Lim, Bum-Soon (Department of Dental Biomaterials Science, School of Dentistry, Seoul National University)
  • 이한아 (서울대학교 치의학대학원 치과생체재료과학교실) ;
  • 석수황 (서울대학교 치의학대학원 치과생체재료과학교실) ;
  • 이상혁 (서울대학교 치의학대학원 치과생체재료과학교실) ;
  • 임범순 (서울대학교 치의학대학원 치과생체재료과학교실)
  • Received : 2018.10.11
  • Accepted : 2018.11.07
  • Published : 2018.12.30

Abstract

The purpose of this study was to evaluate the effect of acid-treatment conditions on the surface properties of the RBM (Resorbable Blast Media) treated titanium. Disk typed cp-titanium specimens were prepared and RBM treatments was performed with calcium phosphate ceramic powder. Acid solution was mixed using HCl, $H_2SO_4$ and deionized water with 4 different volume fraction. The RBM treated titanium was acid treated with different acid solutions at 3 different temperatures and for 3 different periods. After acid-treatments, samples were cleaned with 1 % Solujet solution for 30 min and deionized water for 30 min using ultrasonic cleanser, then dried in the electrical oven ($37^{\circ}C$). Weight of samples before and after acid-treatment were measured using electric balance. Surface roughness was estimated using a confocal laser scanning microscopy, crystal phase in the surface of sample was analyzed using X-ray diffractometer. Surface morphology and components were evaluated using Scanning Electron Microscope (SEM) with Energy Dispersive X-ray spectroscopy (EDX) and X-ray Photoemission Spectroscopy (XPS). Values of the weight changes and surface roughness were statistically analyzed using Tukey-multiple comparison test (p=0.05). Weight change after acid treatments were significantly increased with increasing the concentration of $H_2SO_4$ and temperature of acid-solution. Acid-treatment conditions (concentration of $H_2SO_4$, temperature and time) did not produce consistent effects on the surface roughness, it showed the scattered results. From XRD analysis, formation of titanium hydrides in the titanium surface were observed in all specimens treated with acid-solutions. From XPS analysis, thin titanium oxide layer in the acid-treated specimens could be evaluated. Acid solution with $90^{\circ}C$ showed the strong effect on the titanium surface, it should be treated with caution to avoid the over-etching process.

본 논문에서는 순수 티타늄(cp-Ti) 임플란트를 SLA (Sandblasting with Large grit and Acid) 처리할 때 산-처리 용액의 유형, 산-처리 온도 및 산-처리 시간 등이 티타늄 표면에 주는 영향을 평가하고자 하였다. 원판형의 cp-Ti 시편을 준비하여 표면을 인산칼슘계 세라믹 분말로 RBM (Resorbable Blast Media) 처리하였다. 산-처리 용액으로 염산을 30 vol%로 고정하고 황산의 농도를 10, 20, 30, 35 vol%로 증가시키며 혼합한 용액에 증류수를 추가하여 4종의 산-처리 용액을 준비하였다. 실험군은 4종의 산-처리 용액, 3 종의 처리온도 및 3 종의 처리시간 등 36 가지로 분류하여 실험군당 4개의 시편을 산-처리하였다. 산-처리 전 후 시편 무게를 전자저울로 측정하여 무게 감소비율을 계산하였고, 공초점주사전자현미경으로 표면거칠기를 측정하였다. X-선 회절분석기(XRD)로 XRD 패턴을 측정하였고, 주사전자현미경으로 표면 형상을 관찰하였으며, 에너지 분산형 분석기(EDX)와 광전자분광법(XPS)로 표면성분을 분석하였다. 무게 감소비율과 표면거칠기 측정값은 Tukey-multiple comparison test (p = 0.05)로 통계 분석하여 다음의 결과를 얻었다. 산-처리에 따른 티타늄 시편의 무게 감소는 황산의 농도 및 산-처리 용액의 온도가 높을수록 유의하게 증가하였다. 산-처리한 티타늄의 표면 거칠기는 산-처리 조건(황산 농도, 온도, 시간)에 일정한 영향을 받지 않았다. XRD 분석에서 산-처리한 모든 시편에서 티타늄(${\alpha}-Ti$)과 수소화 티타늄($TiH_2$) 결정상이 관찰되었고, XPS 분석으로 티타늄 표면에 얇은 n산화 티타늄 층이 형성된 것을 알 수 있었다. $90^{\circ}C$ 산-용액에서 처리할 경우 티타늄 표면이 과도하게 용해될 수 있으므로 주의하여야 한다.

Keywords

References

  1. Kasemo B, Lausmaa J. Aspects of surface physics on titanium implants. Swed Dent J Suppl. 1985;28:19-36.
  2. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844-854 https://doi.org/10.1016/j.dental.2006.06.025
  3. 이중배. 임플란트용 티타늄 및 티타늄 합금의 표면처리. 대한치과기재학회지. 2008;35:315-328.
  4. Larsson C, Emanuelsson L, Thomsen P, Ericson LE, Aronsson BO, Kasemo B, Lausmaa J. Bone response to surface modified titanium implants - studies on the tissue response after 1 year to machined and electropolished implants with different oxide thicknesses. J Mater Sci Mater Med. 1997;8:721-729. https://doi.org/10.1023/A:1018548225899
  5. Anselme K, Bigerelle M. Statistical demonstration of the relative effect of surface chemistry and roughness on human osteoblast short-term adhesion. J Mater Sci Mater Med. 2006;17:471-479. https://doi.org/10.1007/s10856-006-8475-8
  6. Kawahara H, Aoki H, Koike H, Soeda Y, Kawahara D, Matsuda S. No evidence to indicate topographic dependency on bone formation around cp titanium implants under masticatory loading. J Mater Sci Mater Med. 2006;17:727-734. https://doi.org/10.1007/s10856-006-9683-y
  7. Svehla M, Morberg P, Zicat B, Bruce W, Sonnabend D, Walsh WR. Morphometric and mechanical evaluation of titanium implant integration: comparison of five surface structures. J Biomed Mater Res. 2000;51:15-22. https://doi.org/10.1002/(SICI)1097-4636(200007)51:1<15::AID-JBM3>3.0.CO;2-9
  8. Bacchelli B, Giavaresi G, Franchi M, Martini D, De Pasquale V, Trire A, Fini M, Giardino R, Ruggeri A. Influence of a zirconia sandblasting treated surface on periimplant bone healing: An experi- mental study in sheep. Acta Biomater. 2009;5:2246-2257. https://doi.org/10.1016/j.actbio.2009.01.024
  9. Le Guehennec L, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater. 2008;4:535-543. https://doi.org/10.1016/j.actbio.2007.12.002
  10. Coelho PG, Granjeiro JM, Romanos GE, Suzuki M, Silva NR, Cardaropoli G, Thompson VP, Lemons JE. Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B Appl Biomater. 2009;88:579-596.
  11. Szmukler-Moncler S, Perrin D, Ahossi V, Magnin G, Bernard JP. Biological properties of acid etched titanium implants: effect of sandblasting on bone anchorage. J Biomed Mater Res B Appl Biomater. 2004a;68:149-159.
  12. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont. 1998;11:391-401.
  13. Juodzbalys G, Sapragoniene M, Wennerberg A. New acid etched titanium dental implant surface. Stomatologija, Baltic Dental and Maxillofacial Journal. 2003;5:101-105.
  14. Ban S, Iwaya Y, Kono H, Sato H. Surface modification of titanium by etching in concentrated sulfuric acid. Dental Materials. 2006;22:1115-1120. https://doi.org/10.1016/j.dental.2005.09.007
  15. Wennerberg A, Albrektsson T. Suggested guidelines for the topo- graphic evaluation of implant surfaces. Int J Oral Maxillofac Implants. 2000;15:331-344.
  16. Marin C, Granato R, Suzuki M, Janal MN, Gil JN, Nemcovsky C, Bonfante EA, Coelho PG. Biomechanical and histomorphometric analysis of etched and non-etched resorbable blasting media processed implant surfaces: an experimental study in dogs. J Mech Behav Biomed Mater. 2010;3:382-391. https://doi.org/10.1016/j.jmbbm.2010.02.002
  17. Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants, J Prosthet Dent. 2000;84:522-354. https://doi.org/10.1067/mpr.2000.111966
  18. Szmukler-Moncler S, Testori T, Bernard JP. Etched implants: a comparative surface analysis of four implant systems. J Biomed Mater Res B Appl Biomater. 2004b;69:46-57.
  19. Buser D, Nydegger T, Hirt HP, Cochran DL, Nolte LP. Removal torque values of titanium implants in the maxilla of miniature pigs. Int J Oral Maxillofac Implants. 1998;13:611-619.
  20. Martin JY, Dean DD, Cochran DL, Simpson J, Boyan BD, Schwartz Z. Proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63) cultured on previously used titanium surfaces. Clin Oral Implants Res. 1996;7:27-37. https://doi.org/10.1034/j.1600-0501.1996.070104.x
  21. Takeuchi M, Abe Y, Yoshida Y, Nakayama Y, Okazaki M, Akagawa Y. Acid pretreatment of titanium implants. Biomaterials. 2003;24: 1821-1827. https://doi.org/10.1016/S0142-9612(02)00576-8
  22. Alla RK, Ginjupalli K, Upadhya N, Shammas M, Ravi RK, Sekhar R. Surface roughness of implants: a review. Trends Biomater Artif Organs. 2011;25:112-118.
  23. Al-Radha ASD. The influence of different acids etch on dental implants titanium surface. IOSR J Dental and Medical Sciences (IOSR-JDMS). 2016;15:87-91.
  24. Annunziata M, Guida L. The effect of titanium surface modifications on dental implant osseointegration. Front Oral Biol. 2015;17:62-77.
  25. Chrcanovic BR, Martins MD. Study of the influence of acid etching treatments on the superficial characteristics of Ti. Mat Res. 2014;17:373-380. https://doi.org/10.1590/S1516-14392014005000042
  26. Chrcanovic BR, Wennerberg A, Martins MD. Influence of temperature and acid etching time on the superficial characteristics of Ti. Mat Res. 2015;18:963-970. https://doi.org/10.1590/1516-1439.014115
  27. Balli B, Dikici T, Toparli M. Enhancement and characterization of titanium surfaces with sandblasting and acid etching for dental implants. Inter J Mater & Metallur Eng. 2015;9:577-579.
  28. Taborelli M, Jobin M, Francois P, Vaudaux P, Tonetti M, Szmukler-Moncler S, Simpson JP, Descouts P. Influence of surface treatments developed for oral implants on the physical and biological properties of titanium. I. Surface characterization. Clin Oral Impl Res. 1997;8:208-216. https://doi.org/10.1034/j.1600-0501.1997.080307.x
  29. Arronson BO, Hjorvarsson B, Frauchinger L, Taborelli M, Vallotton PH, Descouts P. Hydrogen desorption from sand-blasted and acid etched titanium surfaces after glow-discharge treatment. J Biomed Mater Res. 2001;54:20-29. https://doi.org/10.1002/1097-4636(200101)54:1<20::AID-JBM3>3.0.CO;2-Z
  30. Fukai Y. Phase diagrams of transition metal-hydrogen systems. J Jpn Inst Metals. 1991;55:17-21. https://doi.org/10.2320/jinstmet1952.55.1_17
  31. Conforto E, Caillard D, Aronsson B-O, Descouts P. Electron microscopy on titanium implants for bone replacement after "SLA" surface treatment. Eur Cells Mater. 2002;3:9-10. https://doi.org/10.22203/eCM.v003a02
  32. Conforto E, Aronsson BO, Salito A, Crestou C, Caillard D. Rough surfaces of titanium and titanium alloys for implants and prostheses. Mater Sci Eng C. 2004;24:611-618. https://doi.org/10.1016/j.msec.2004.08.004
  33. Yokoyama K, Ichikawa T, Murakami H, Miyamoto Y, Asaoka K. Fracture mechanisms of retrieved titanium screw thread in dental implant. Biomater. 2002;23:2459-2465. https://doi.org/10.1016/S0142-9612(01)00380-5
  34. Perrin D, Szmukler-Moncler S, Echikou C, Pointaire P, Bernard JP. Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. Clin Oral Implants Res. 2002;13:465-469. https://doi.org/10.1034/j.1600-0501.2002.130504.x
  35. Frank MJ, Walter MS, Lyngstadaas SP, Wintermantel E, Haugen HJ. Hydrogen content in titanium and a titanium-zirconium alloy after acid etching. Mater Sci Eng C Mater Biol Appl. 2013a;33:1282-1288. https://doi.org/10.1016/j.msec.2012.12.027
  36. Videm K, Lamolle S, Monjo M, Ellingsen JE, Lyngstadaas SP, Haugen HJ. Hydride formation on titanium surfaces by cathodic polarization. Appl Surf Sci. 2008;255:3011-3015. https://doi.org/10.1016/j.apsusc.2008.08.090
  37. Iwaya Y, Machigashira M, Kanbara K, Miyamoto M, Noguchi K, Izumi Y, Ban S. Surface properties and biocompatibility of acid- etched titanium. Dent Mater J. 2008;27:415-421. https://doi.org/10.4012/dmj.27.415
  38. Lamolle SF, Monjo M, Lyngstadaas SP, Ellingsen JE, Haugen HJ. Titanium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance. J Biomed Mater Res Part A. 2009;88:581-588.
  39. Xing R, Salou L, Taxt-Lamolle S, Reseland JE, Lyngstadaas SP, Haugen HJ. Surface hydride on titanium by cathodic polarization promotes human gingival fibroblast growth. J Biomed Mater Res A. 2014;102:1389-1398. https://doi.org/10.1002/jbm.a.34819
  40. Frank MJ, Walter MS, Bucko MM, Pamula E, Lyngstadaas SP, Haugen HJ. Polarization of modified titanium and titanium-zirconium creates nanostructures while hydride formation is modulated. Appl Surf Sci. 2013b;282:7-16. https://doi.org/10.1016/j.apsusc.2013.04.059
  41. Gomez-Florit M, Xing R, Ramis JM, Taxt-Lamolle S, Haugen HJ, Lyngstadaas SP, Monjo M. Human gingival fibroblasts function is stimulated on machined hydrided titanium zirconium dental implants. J Dent. 2014;42:30-38. https://doi.org/10.1016/j.jdent.2013.11.003
  42. ASTM F67 Standard Specification for Unalloyed Titanium, for Surgical Implant Applications, 2000
  43. ASTM 1185 Standard specification for composition of hydroxyapatite for surgical implants, 2003.