DOI QR코드

DOI QR Code

Study on the Thermal and Electrical Conductivity Properties of Titanium-sputtered Materials

  • Han, Hye Ree (Dept. of Beauty Art Care, Graduate School of Dongguk University/Dept. of Beauty Management, Myongji College)
  • Received : 2022.03.30
  • Accepted : 2022.05.20
  • Published : 2022.06.30

Abstract

Titanium exhibits substantial corrosion resistance, strength, and ductility, with a specific gravity of approximately 4.5 and a melting point of approximately 1800℃. It is currently used in aircraft parts and space development. This study considered the thermal characteristics, stealth effects of infrared thermal imaging cameras, electromagnetic shielding, and electrical conductivity of Ti-sputtered materials. Base materials of different densities and types were treated using titanium sputtering. Infrared thermal imaging showed a better stealth effect when the titanium layer was directed toward the outside. The film sample presented a better stealth effect than the fabrics did. In each of the samples subjected to titanium sputtering, when the titanium layer was directed outward, the untreated sample or exposed titanium layer showed surface temperatures lower than those of the samples with the titanium layer oriented toward the heat source. Additionally, after the titanium sputtering treatment, the films conducted electricity (low resistance) better than the fabrics did. All titanium-sputtered specimens presented reduced electromagnetic wave transmission and significantly reduced infrared transmission. These results are expected to apply to military uniforms (soldiers' protective clothing to gain the upper hand on the battlefield), medical sensors, multifunctional intelligent textiles and etc.

Keywords

References

  1. Annur, D., Kartika, I., Supriadi, S., & Suharno, B. (2021). Titanium and titanium based alloy prepared by spark plasma sintering method for biomedical implant applications-a review. Materials Research Express, 8(1):012001. doi:10.1088/2053-1591/abd969
  2. Aygul, E., Yalcinkaya, S., & Sahin, Y. (2020). Microstructural analysis of sintered pure-titanium and titanium/hydroxyapatite (HA) surgical implant materials under different temperatures and HA doped conditions produced by powder metallurgy. Materials Research Express, 7(3):035402. doi:10.1088/2053-1591/ab7c88
  3. Babapoor, A., Asl, M. S., Ahmadi, Z., & Namini, A. S. (2018). Effects of spark plasma sintering temperature on densification, hardness and thermal conductivity of titanium carbide. Ceramics International, 44(12), 14541-14546. doi:10.1016/j.ceramint.2018.05.071
  4. Chakin, V., Fedorov, A., Rolli, R., Gaisin, R., Klimenkov, M., Reimann, J., & Nakamichi, M. (2022). Thermal conductivity of high-dose neutron irradiated beryllium and titanium beryllide. Journal of Nuclear Materials, 559:153430. doi:10.1016/j.jnucmat.2021.153430
  5. Chouirfa, H., Bouloussa, H., Migonney, V., & Falentin-Daudre, C. (2019). Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomaterialia, 83, 37-54. doi:10.1016/j.actbio.2018.10.036
  6. Dehghan-Manshadi, A., Bermingham, M. J., Dargusch, M. S., StJohn, D. H., & Qian, M. (2017). Metal injection moulding of titanium and titanium alloys: Challenges and recent development. Powder Technology, 319, 289-301. doi:10.1016/j.powtec.2017.06.053
  7. Eze, A. A., Jamiru, T., Sadiku, E. R., Durowoju, M. O., Kupolati, W. K., Ibrahim, I. D., ... Diouf, S. (2018). Effect of titanium addition on the microstructure, electrical conductivity and mechanical properties of copper by using SPS for the preparation of Cu-Ti alloys. Journal of Alloys and Compounds, 736, 163-171. doi:10.1016/j.jallcom.2017.11.129
  8. Fang, Z. Z., Paramore, J. D., Sun, P., Chandran, K. S. R., Zhang, Y., Xia, Y., ... Free, M. (2018). Powder metallurgy of titanium - past, present, and future. International Materials Reviews, 63(7), 407-459. doi:10.1080/09506608.2017.1366003
  9. Gan, Y. Y., Ong, H. C., Ling, T. C., Zulkifli, N. W. M., Wang, C.-T., & Yang, Y.-C. (2018). Thermal conductivity optimization and entropy generation analysis of titanium dioxide nanofluid in evacuated tube solar collector. Applied Thermal Engineering, 145, 155-164. doi:10.1016/j.applthermaleng.2018.09.012
  10. Habekost, M. (2013). Which color differencing equation should be used? International Circular of Graphic Education and Research, 6, 20-33. Retrieved from https://www.internationalcircle.net/circular/issues/13_01/ICJ_06_2013_02_069.pdf
  11. Han, H. R. (2019). Characteristics of infrared blocking, stealth and color difference of aluminum sputtered fabrics. Journal of the Korean Society of Clothing and Textiles, 43(4), 592-604. doi:10.5850/JKSCT.2019.43.4.592
  12. Han, H. R. (2021). 티타늄 스퍼터링 소재의 전기전도성, 열적특성, 스텔스 효과에 관한 연구 [A study on the electrical conductivity, infrared blocking, and color difference of titanium sputter materials]. Proceedings of the Korean Society of Clothing and Textiles, Fall Conference, Korea, 207.
  13. Hayat, M. D., Singh, H., He, Z., & Cao, P. (2019). Titanium metal matrix composites: An overview. Composites Part A: Applied Science and Manufacturing, 121, 418-438. doi:10.1016/j.compositesa.2019.04.005
  14. Jiang, S., Xu, J., Chen, Z., Guo, R., Miao, D., Peng, L., ... Shang, S. (2018). Enhanced electro-conductivity and multishielding performance with copper, stainless steel and titanium coating onto PVA impregnated cotton fabric. Journal of Materials Science: Materials in Electronics, 29(7), 5624-5633. doi:10.1007/s10854-018-8531-4
  15. Kang, X., Liu, S., Dai, Z., He, Y., Song, X., & Tan, Z. (2019). Titanium dioxide: From engineering to applications. Catalysts, 9(2):191. doi:10.3390/catal9020191
  16. Kaur, M., & Singh, K. (2019). Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science & Engineering: C, 102, 844-862. doi:10.1016/j.msec.2019.04.064
  17. Kharel, P. L., Cuillier, P. M., Fernando, K., Zamborini, F. P., & Alphenaar, B. W. (2018). Effect of rare-earth metal oxide nanoparticles on the conductivity of nanocrystalline titanium dioxide: An electrical and electrochemical approach. The Journal of Physical Chemistry C, 122(27), 15090-15096. doi:10.1021/acs.jpcc.8b02971
  18. Kim, K. T., Eo, M. Y., Nguyen, T. T. H., & Kim, S. M. (2019). General review of titanium toxicity. International Journal of Implant Dentistry, 5:10. doi:10.1186/s40729-019-0162-x
  19. Koizumi, H., Takeuchi, Y., Imai, H., Kawai, T., & Yoneyama, T. (2019). Application of titanium and titanium alloys to fixed dental prostheses. Journal of Prosthodontic Research, 63(3), 266-270. doi:10.1016/j.jpor.2019.04.011
  20. Kolli, R. P., & Devaraj, A. (2018). A review of metastable beta titanium alloys. Metals, 8(7):506. doi:10.3390/met8070506
  21. Korotkova, K., Bainov, D., Smirnov, S., Yunusov, I., & Zhidik, Y. (2020). Electrical conductivity and optical properties of nanoscale titanium films on sapphire for localized plasmon resonance-based sensors. Coatings, 10(12):1165. doi:10.3390/coatings10121165
  22. Leong, K. Y., Razali, I., Ahmad, K. Z. K., Ong, H. C., Ghazali, M. J., & Rahman, M. R. A. (2018). Thermal conductivity of an ethylene glycol/water-based nanofluid with copper-titanium dioxide nanoparticles: An experimental approach. International Communications in Heat and Mass Transfer, 90, 23-28. doi:10.1016/j.icheatmasstransfer.2017.10.005
  23. Li, J., Shen, L., Liu, Z., Liang, H., Li, Y., & Han, X. (2019). Microstructure, microhardness, and wear performance of zirconia reinforced pure titanium composites prepared by selective laser melting. Materials Research Express, 6(3):036520. doi:10.1088/2053-1591/aaf620
  24. Peng, R., Zhang, P., Tian, Z., Zhu, D., Chen, C., Yin, B., & Hua, X. (2020). Effect of textured DLC coatings on tribological properties of titanium alloy under grease lubrication. Materials Research Express, 7(6):066408. doi:10.1088/2053-1591/ab9ced
  25. Pujar, P., Vardhan, R. V., Gupta, D., & Mandal, S. (2018). A balancing between super transparency and conductivity of solution combustion derived titanium doped indium oxide: Effect of charge carrier density and mobility. Thin Solid Films, 660, 267-275. doi:10.1016/j.tsf.2018.06.031
  26. Sampreeth, T., Al-Maghrabi, M. A., Bahuleyan, B. K., & Ramesan, M. T. (2018). Synthesis, characterization, thermal properties, conductivity and sensor application study of polyaniline/cerium-doped titanium dioxide nanocomposites. Journal of Materials Science, 53(1), 591-603. doi:10.1007/s10853-017-1505-8
  27. Scott, E. A., Gaskins, J. T., King, S. W., & Hopkins, P. E. (2018). Thermal conductivity and thermal boundary resistance of atomic layer deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon. APL Materials, 6(5):058302. doi:10.1063/1.5021044
  28. Shao, C., Yu, Z., Liu, H., Zheng, Z., Sun, N., & Diao, C. (2017). Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte. Electrochimica Acta, 225, 345-349. doi:10.1016/j.electacta.2016.12.140
  29. Suarez-Lopez del Amo, F., Garaicoa-Pazmino, C., Fretwurst, T., Castilho, R. M., & Squarize, C. H. (2018). Dental implants-associated release of titanium particles: A systematic review. Clinical Oral Implants Research, 29(11), 1085-1100. doi:10.1111/clr.13372
  30. Takahashi, K., Mori, K., & Takebe, H. (2020). Application of titanium and its alloys for automobile parts. Proceedings of the MATEC Web of Conferences, France, 321:02003. doi:10.1051/matecconf/202032102003
  31. Valentini, X., Deneufbourg, P., Paci, P., Rugira, P., Laurent, S., Frau, A., ... Nonclercq, D. (2018). Morphological alterations induced by the exposure to TiO2 nanoparticles in primary cortical neuron cultures and in the brain of rats. Toxicology Reports, 5, 878-889. doi:10.1016/j.toxrep.2018.08.006
  32. Yastrebinsky, R. N., Pavlenko, V. I., Gorodov, A. I., Karnauhov, A. A., Cherkashina, N. I., & Yastrebinskay, A. V. (2022). Effect of electrochemical modification of titanium hydride fraction on oxygen content in surface and deep layers. Materials Research Express, 9(1):016401. doi:10.1088/2053-1591/ac45bd
  33. Yastrebinsky, R. N., Pavlenko, V. I., Karnauhov, A. A., Cherkashina, N. I., & Yastrebinskaya, A. V. (2020). Thermal stability of titanium hydride modified by the electrochemical deposition of titanium metal. Materials Research Express, 7(10):106519. doi:10.1088/2053-1591/abc0a2
  34. Zeman, T., Loh, E.-W., Cierny, D., & Sery, O. (2018). Penetration, distribution and brain toxicity of titanium nanoparticles in rodents' body: a review. IET Nanobiotechnology, 12(6), 695-700. doi:10.1049/iet-nbt.2017.0109
  35. Zhang, L.-C., Chen, L.-Y., & Wang, L. (2020). Surface modification of titanium and titanium alloys: Technologies, developments, and future interests. Advanced Engineering Materials, 22(5):1901258. doi:10.1002/adem.201901258
  36. Ziebel, M. E., Darago, L. E., & Long, J. R. (2018). Control of electronic structure and conductivity in two-dimensional metal-semiquinoid frameworks of titanium, vanadium, and chromium. Journal of the American Chemical Society, 140(8), 3040-3051. doi:10.1021/jacs.7b13510
  37. Ziental, D., Czarczynska-Goslinska, B., Mlynarczyk, D. T., Glowacka-Sobotta, A., Stanisz, B., Goslinski, T., & Sobotta, L. (2020). Titanium dioxide nanoparticles: Prospects and applications in medicine. Nanomaterials, 10(2):387. doi:10.3390/nano10020387