References
- Annur, D., Kartika, I., Supriadi, S., & Suharno, B. (2021). Titanium and titanium based alloy prepared by spark plasma sintering method for biomedical implant applications-a review. Materials Research Express, 8(1):012001. doi:10.1088/2053-1591/abd969
- Aygul, E., Yalcinkaya, S., & Sahin, Y. (2020). Microstructural analysis of sintered pure-titanium and titanium/hydroxyapatite (HA) surgical implant materials under different temperatures and HA doped conditions produced by powder metallurgy. Materials Research Express, 7(3):035402. doi:10.1088/2053-1591/ab7c88
- Babapoor, A., Asl, M. S., Ahmadi, Z., & Namini, A. S. (2018). Effects of spark plasma sintering temperature on densification, hardness and thermal conductivity of titanium carbide. Ceramics International, 44(12), 14541-14546. doi:10.1016/j.ceramint.2018.05.071
- Chakin, V., Fedorov, A., Rolli, R., Gaisin, R., Klimenkov, M., Reimann, J., & Nakamichi, M. (2022). Thermal conductivity of high-dose neutron irradiated beryllium and titanium beryllide. Journal of Nuclear Materials, 559:153430. doi:10.1016/j.jnucmat.2021.153430
- Chouirfa, H., Bouloussa, H., Migonney, V., & Falentin-Daudre, C. (2019). Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomaterialia, 83, 37-54. doi:10.1016/j.actbio.2018.10.036
- Dehghan-Manshadi, A., Bermingham, M. J., Dargusch, M. S., StJohn, D. H., & Qian, M. (2017). Metal injection moulding of titanium and titanium alloys: Challenges and recent development. Powder Technology, 319, 289-301. doi:10.1016/j.powtec.2017.06.053
- Eze, A. A., Jamiru, T., Sadiku, E. R., Durowoju, M. O., Kupolati, W. K., Ibrahim, I. D., ... Diouf, S. (2018). Effect of titanium addition on the microstructure, electrical conductivity and mechanical properties of copper by using SPS for the preparation of Cu-Ti alloys. Journal of Alloys and Compounds, 736, 163-171. doi:10.1016/j.jallcom.2017.11.129
- Fang, Z. Z., Paramore, J. D., Sun, P., Chandran, K. S. R., Zhang, Y., Xia, Y., ... Free, M. (2018). Powder metallurgy of titanium - past, present, and future. International Materials Reviews, 63(7), 407-459. doi:10.1080/09506608.2017.1366003
- Gan, Y. Y., Ong, H. C., Ling, T. C., Zulkifli, N. W. M., Wang, C.-T., & Yang, Y.-C. (2018). Thermal conductivity optimization and entropy generation analysis of titanium dioxide nanofluid in evacuated tube solar collector. Applied Thermal Engineering, 145, 155-164. doi:10.1016/j.applthermaleng.2018.09.012
- Habekost, M. (2013). Which color differencing equation should be used? International Circular of Graphic Education and Research, 6, 20-33. Retrieved from https://www.internationalcircle.net/circular/issues/13_01/ICJ_06_2013_02_069.pdf
- Han, H. R. (2019). Characteristics of infrared blocking, stealth and color difference of aluminum sputtered fabrics. Journal of the Korean Society of Clothing and Textiles, 43(4), 592-604. doi:10.5850/JKSCT.2019.43.4.592
- Han, H. R. (2021). 티타늄 스퍼터링 소재의 전기전도성, 열적특성, 스텔스 효과에 관한 연구 [A study on the electrical conductivity, infrared blocking, and color difference of titanium sputter materials]. Proceedings of the Korean Society of Clothing and Textiles, Fall Conference, Korea, 207.
- Hayat, M. D., Singh, H., He, Z., & Cao, P. (2019). Titanium metal matrix composites: An overview. Composites Part A: Applied Science and Manufacturing, 121, 418-438. doi:10.1016/j.compositesa.2019.04.005
- Jiang, S., Xu, J., Chen, Z., Guo, R., Miao, D., Peng, L., ... Shang, S. (2018). Enhanced electro-conductivity and multishielding performance with copper, stainless steel and titanium coating onto PVA impregnated cotton fabric. Journal of Materials Science: Materials in Electronics, 29(7), 5624-5633. doi:10.1007/s10854-018-8531-4
- Kang, X., Liu, S., Dai, Z., He, Y., Song, X., & Tan, Z. (2019). Titanium dioxide: From engineering to applications. Catalysts, 9(2):191. doi:10.3390/catal9020191
- Kaur, M., & Singh, K. (2019). Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science & Engineering: C, 102, 844-862. doi:10.1016/j.msec.2019.04.064
- Kharel, P. L., Cuillier, P. M., Fernando, K., Zamborini, F. P., & Alphenaar, B. W. (2018). Effect of rare-earth metal oxide nanoparticles on the conductivity of nanocrystalline titanium dioxide: An electrical and electrochemical approach. The Journal of Physical Chemistry C, 122(27), 15090-15096. doi:10.1021/acs.jpcc.8b02971
- Kim, K. T., Eo, M. Y., Nguyen, T. T. H., & Kim, S. M. (2019). General review of titanium toxicity. International Journal of Implant Dentistry, 5:10. doi:10.1186/s40729-019-0162-x
- Koizumi, H., Takeuchi, Y., Imai, H., Kawai, T., & Yoneyama, T. (2019). Application of titanium and titanium alloys to fixed dental prostheses. Journal of Prosthodontic Research, 63(3), 266-270. doi:10.1016/j.jpor.2019.04.011
- Kolli, R. P., & Devaraj, A. (2018). A review of metastable beta titanium alloys. Metals, 8(7):506. doi:10.3390/met8070506
- Korotkova, K., Bainov, D., Smirnov, S., Yunusov, I., & Zhidik, Y. (2020). Electrical conductivity and optical properties of nanoscale titanium films on sapphire for localized plasmon resonance-based sensors. Coatings, 10(12):1165. doi:10.3390/coatings10121165
- Leong, K. Y., Razali, I., Ahmad, K. Z. K., Ong, H. C., Ghazali, M. J., & Rahman, M. R. A. (2018). Thermal conductivity of an ethylene glycol/water-based nanofluid with copper-titanium dioxide nanoparticles: An experimental approach. International Communications in Heat and Mass Transfer, 90, 23-28. doi:10.1016/j.icheatmasstransfer.2017.10.005
- Li, J., Shen, L., Liu, Z., Liang, H., Li, Y., & Han, X. (2019). Microstructure, microhardness, and wear performance of zirconia reinforced pure titanium composites prepared by selective laser melting. Materials Research Express, 6(3):036520. doi:10.1088/2053-1591/aaf620
- Peng, R., Zhang, P., Tian, Z., Zhu, D., Chen, C., Yin, B., & Hua, X. (2020). Effect of textured DLC coatings on tribological properties of titanium alloy under grease lubrication. Materials Research Express, 7(6):066408. doi:10.1088/2053-1591/ab9ced
- Pujar, P., Vardhan, R. V., Gupta, D., & Mandal, S. (2018). A balancing between super transparency and conductivity of solution combustion derived titanium doped indium oxide: Effect of charge carrier density and mobility. Thin Solid Films, 660, 267-275. doi:10.1016/j.tsf.2018.06.031
- Sampreeth, T., Al-Maghrabi, M. A., Bahuleyan, B. K., & Ramesan, M. T. (2018). Synthesis, characterization, thermal properties, conductivity and sensor application study of polyaniline/cerium-doped titanium dioxide nanocomposites. Journal of Materials Science, 53(1), 591-603. doi:10.1007/s10853-017-1505-8
- Scott, E. A., Gaskins, J. T., King, S. W., & Hopkins, P. E. (2018). Thermal conductivity and thermal boundary resistance of atomic layer deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon. APL Materials, 6(5):058302. doi:10.1063/1.5021044
- Shao, C., Yu, Z., Liu, H., Zheng, Z., Sun, N., & Diao, C. (2017). Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte. Electrochimica Acta, 225, 345-349. doi:10.1016/j.electacta.2016.12.140
- Suarez-Lopez del Amo, F., Garaicoa-Pazmino, C., Fretwurst, T., Castilho, R. M., & Squarize, C. H. (2018). Dental implants-associated release of titanium particles: A systematic review. Clinical Oral Implants Research, 29(11), 1085-1100. doi:10.1111/clr.13372
- Takahashi, K., Mori, K., & Takebe, H. (2020). Application of titanium and its alloys for automobile parts. Proceedings of the MATEC Web of Conferences, France, 321:02003. doi:10.1051/matecconf/202032102003
- Valentini, X., Deneufbourg, P., Paci, P., Rugira, P., Laurent, S., Frau, A., ... Nonclercq, D. (2018). Morphological alterations induced by the exposure to TiO2 nanoparticles in primary cortical neuron cultures and in the brain of rats. Toxicology Reports, 5, 878-889. doi:10.1016/j.toxrep.2018.08.006
- Yastrebinsky, R. N., Pavlenko, V. I., Gorodov, A. I., Karnauhov, A. A., Cherkashina, N. I., & Yastrebinskay, A. V. (2022). Effect of electrochemical modification of titanium hydride fraction on oxygen content in surface and deep layers. Materials Research Express, 9(1):016401. doi:10.1088/2053-1591/ac45bd
- Yastrebinsky, R. N., Pavlenko, V. I., Karnauhov, A. A., Cherkashina, N. I., & Yastrebinskaya, A. V. (2020). Thermal stability of titanium hydride modified by the electrochemical deposition of titanium metal. Materials Research Express, 7(10):106519. doi:10.1088/2053-1591/abc0a2
- Zeman, T., Loh, E.-W., Cierny, D., & Sery, O. (2018). Penetration, distribution and brain toxicity of titanium nanoparticles in rodents' body: a review. IET Nanobiotechnology, 12(6), 695-700. doi:10.1049/iet-nbt.2017.0109
- Zhang, L.-C., Chen, L.-Y., & Wang, L. (2020). Surface modification of titanium and titanium alloys: Technologies, developments, and future interests. Advanced Engineering Materials, 22(5):1901258. doi:10.1002/adem.201901258
- Ziebel, M. E., Darago, L. E., & Long, J. R. (2018). Control of electronic structure and conductivity in two-dimensional metal-semiquinoid frameworks of titanium, vanadium, and chromium. Journal of the American Chemical Society, 140(8), 3040-3051. doi:10.1021/jacs.7b13510
- Ziental, D., Czarczynska-Goslinska, B., Mlynarczyk, D. T., Glowacka-Sobotta, A., Stanisz, B., Goslinski, T., & Sobotta, L. (2020). Titanium dioxide nanoparticles: Prospects and applications in medicine. Nanomaterials, 10(2):387. doi:10.3390/nano10020387