• 제목/요약/키워드: titanium dental implant

검색결과 320건 처리시간 0.023초

The Effects of a Er:YAG Laser on Machined, Sand-Blasted and Acid-Etched, and Resorbable Blast Media Titanium Surfaces Using Confocal Microscopy and Scanning Electron Microscopy

  • Park, Jun-Beom;Kim, Do-Young;Ko, Youngkyung
    • Journal of Korean Dental Science
    • /
    • 제9권1호
    • /
    • pp.19-27
    • /
    • 2016
  • Purpose: Laser treatment has become a popular method in implant dentistry, and lasers have been used for the decontamination of implant surfaces when treating peri-implantitis. This study was performed to evaluate the effects of an Erbium-doped:Yttrium-Aluminum-Garnet (Er:YAG) laser with different settings on machined (MA), sand-blasted and acid-etched (SA), and resorbable blast media (RBM) titanium surfaces using scanning electron microscopy and confocal microscopy. Materials and Methods: Four MA, four SA, and four RBM discs were either irradiated at 40 mJ/20 Hz, 90 mJ/20 Hz, or 40 mJ/25 Hz for 2 minutes. The specimens were evaluated with scanning electron microscopy and confocal microscopy. Result: The untreated MA surface demonstrated uniform roughness with circumferential machining marks, and depressions were observed after laser treatment. The untreated SA surface demonstrated a rough surface with sharp spikes and deep pits, and the laser produced noticeable changes on the SA titanium surfaces with melting and fusion. The untreated RBM surface demonstrated a rough surface with irregular indentation, and treatment with the laser produced changes on the RBM titanium surfaces. The Er:YAG laser produced significant changes on the roughness parameters, including arithmetic mean height of the surface (Sa) and maximum height of the surface (Sz), of the MA and SA surfaces. However, the Er:YAG laser did not produce notable changes on the roughness parameters, such as Sa and Sz, of the RBM surfaces. Conclusion: This study evaluated the effects of an Er:YAG laser on MA, SA, and RBM titanium discs using confocal microscopy and scanning electron microscopy. Treatment with the laser produced significant changes in the roughness of MA and SA surfaces, but the roughness parameters of the RBM discs were not significantly changed. Further research is needed to evaluate the efficiency of the Er:YAG laser in removing the contaminants, adhering bacteria, and the effects of treatment on cellular attachment, proliferation, and differentiation.

A comparative biomechanical study of original and compatible titanium bases: evaluation of screw loosening and 3D-crown displacement following cyclic loading analysis

  • Oziunas, Rimantas;Sakalauskiene, Jurgina;Jegelevicius, Darius;Januzis, Gintaras
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권2호
    • /
    • pp.70-77
    • /
    • 2022
  • PURPOSE. This study evaluated screw loosening and 3D crown displacement after cyclic loading of implant-supported incisor crowns cemented with original titanium bases or with three compatible, nonoriginal components. MATERIALS AND METHODS. A total of 32 dental implants were divided into four groups (n = 8 each): Group 1 used original titanium bases, while Groups 2-4 used compatible components. The reverse torque value (RTV) was evaluated prior to and after cyclic loading (1,200,000 cycles). Samples (prior to and after cyclic loading) were scanned with a microcomputed tomography (micro-CT). Preload and postload files were superimposed by 3D inspection software, and 3D crown displacement analysis was performed using root-mean-square (RMS) values. All datasets were analyzed using one-way ANOVA and Tukey's post hoc analysis. RESULTS. Significant variations were observed in the postload RTV, depending on the titanium base brand (P < .001). The mean postload RTVs were significantly higher in Groups 1 and 2 than in the other study groups. While evaluating 3D crown displacement, the lowest mean RMS value was shown in the original Group 1, with the highest RMS value occurring in Group 4. CONCLUSION. Within the limitations of this in vitro study and under the implemented conditions, it was concluded that the manufacturer brand of the titanium base significantly influenced screw loosening following the fatigue test and influenced 3D crown displacement after cyclic loading.

아파타이트의 형성에 미치는 티타늄의 표면처리 효과 (Effect of Surface Treatment of Titanium on the Formation of Apatite Crystal)

  • 정회웅;원대희;이민호;배태성
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.231-232
    • /
    • 1998
  • The purpose of this study was to examine whether the precipitation of calcium phosphate on titanium surface was affected by surface modification. To improve the bone conductivity, of titanium, samples were devided into 4 groups. Group 1 was immersed in 5M-NaOH solution at $60^{\circ}C$ for 24 hours. Group 2 was immersed in 5M-NaOH solution at $60^{\circ}C $ for 24 hours and heat-treated at $600^{\circ}C$ for 1 hour. Group 3 was anodized in Hanks' solution at 1V, $25^{\circ}C$ for 1 hour. Group 4 was anodized in Hanks' solution at 5V, $80^{\circ}C$ for 5 minutes. And then, all specimens were immersed in the MEM Eagle's medium whose composition was similar to that of extracellular fluid for 30 days. The precipitation of the calcium phosphate on implant surface was increased by the immersion in the NaOH solution, and more highly accelerated by heat treatment at $600^{\circ}C$. The precipitation of the calcium phosphate on titanium implant was increased with the treatment of the anodic oxidation in Hanks' solution at 5V, $80^{\circ}C$.

  • PDF

RETROSPECTIVE MULTICENTER STUDY OF CSM ENDOSSEOUS DENTAL IMPLANT

  • Park, Eun-Young
    • 대한치과보철학회지
    • /
    • 제45권3호
    • /
    • pp.321-328
    • /
    • 2007
  • Statement of problem. To work the economic limitation of dental implant usage, some types of domestic implant have been developing. But, there have been seldom reported about the clinical success rate of them as yet. Purpose. The aim of this retrospective multicenter study was to evaluate the performance of CSM implants(CSM company, Daegu, Korea). Material and methods. Thirty-five patients were rehabilitated with 150 CSM implants in this multicenter study. Results. The success rate was 96.2%. CSM Titanium fixtures can obtain slightly higher success rate when a cover screw was not used for implant installation than when used. However it doesn't show significant difference(p=.7615, Fisher's Exact test). Conclusion. This multicenter retrospective study demonstrated the efficacy of the CSM implant in the treatment of variety of clinical manifestation of tooth loss. And it can be assumed that whether a cover screw is used or not should no influence on the osseointegration.

THE MANAGEMENT OF A COMPLEX IMPLANT CASE USING CAD-CAM TECHNOLOGY: A CLINICAL REPORT

  • Park, Eun-Jin
    • 대한치과보철학회지
    • /
    • 제46권6호
    • /
    • pp.634-638
    • /
    • 2008
  • PURPOSE: The application of computer-aided technology to implant dentistry has created new opportunities for treatment planning, surgery and prosthodontic treatment, but the correct selection and combination of available methods may be challenging in times. Hence, the purpose of this case report is to present a combination of several computer-aided tools as approaches to manage complicated implant case. MATERIAL AND METHODS: A 47 year-old female patient with severe dental anxiety, high expectations, financial restrictions and poor compliance presented for a fixed rehabilitation. A CT scan with a radiographic template obtained with software (SimPlant, Materialize, Leuven, Belgium) was used for treatment planning. The surgical plan was created and converted into a stereolithographic model of the maxilla with bone-supported surgical templates (SurgiGuide, Materialise, Leuven, Belgium), that allowed for the precise placement of 7 implants in a severely resorbed edentulous maxilla. After successful osseointegration, an accurate scan model served as the basis for the fabrication of a one-piece milled titanium framework using the Procera (Nobel Biocare, Gothenburg, Sweden) technology. The final rehabilitation of the edentulous maxilla was rendered in the form of a screw-retained maxillary metal-reinforced resin-based complete prosthesis. RESULTS: Despite challenging circumstances, 7 implants could be placed without bone augmentation in a severely resorbed maxilla using the SimPlant software for pre-implant analysis and the SurgiGuide-system as the surgical template. The patient was successfully restored with a fixed full arch restoration, utilizing the Procera system for the fabrication of a milled titanium framework.

국내 제작 Avana 임프란트와 $Br{\aa}nemark$ 임프란트 주위 골조직에 대한 광학 및 형광 현미경학적 연구 (A HISTOMORPHOMETRIC STUDY OF TWO DIFFERENT THREADED CP TITANIUM IMPLANTS)

  • 한동후;전영식;김진;김선재
    • 대한치과보철학회지
    • /
    • 제37권4호
    • /
    • pp.531-541
    • /
    • 1999
  • The purpose of this study was to compare surface roughness and bone formation around two types of threaded commercially pure titanium implants manufactured by two different companies. The test implants were manufactured by Sumin synthesis dental materials Co. (Avana, Busan, Korea), while the controls were manufactured by Nobel Biocare (MK II, Goteborg, Sweden). To compare bone formation adjacent to newly product implant with $Br{\aa}nemark$ MK II implant, surface roughness was measured by Accurate 1500M and histomorphometric analysis was done. The results were as follows: 1. Measurement of surface roughness showed that Avana implant had a slightly more irregular surface compared with $Br{\aa}nemark$ implant. 2. In the light microscopic studies, no infiltration of inflammatory cells nor the giant cells were observed on both groups. 3. In the light and fluorescent microscopic studies, the amount of osseointegration and the extent and the timing of bone formation were similar. 4. There were no statistically difference between two groups in the average bone to implant con-tacts. Branemark implant; 67% (SD 23%), Avana implant; 70% (SD 16%). Comparing with $Br{\aa}nemark$ implant, Avana implant made of CP grade II titanium showed similar good bone healing, formation and osseointegration.

  • PDF

A comprehensive review of techniques for biofunctionalization of titanium

  • Hanawa, Takao
    • Journal of Periodontal and Implant Science
    • /
    • 제41권6호
    • /
    • pp.263-272
    • /
    • 2011
  • A number of surface modification techniques using immobilization of biofunctional molecules of Titanium (Ti) for dental implants as well as surface properties of Ti and Ti alloys have been developed. The method using passive surface oxide film on titanium takes advantage of the fact that the surface film on Ti consists mainly of amorphous or low-crystalline and nonstoichiometric $TiO_2$. In another method, the reconstruction of passive films, calcium phosphate naturally forms on Ti and its alloys, which is characteristic of Ti. A third method uses the surface active hydroxyl group. The oxide surface immediately reacts with water molecules and hydroxyl groups are formed. The hydroxyl groups dissociate in aqueous solutions and show acidic and basic properties. Several additional methods are also possible, including surface modification techniques, immobilization of poly(ethylene glycol), and immobilization of biomolecules such as bone morphogenetic protein, peptide, collagen, hydrogel, and gelatin.

Effect of cement washout on loosening of abutment screws and vice versa in screw- and cement- retained implant-supported dental prosthesis

  • Kim, Seok-Gyu;Chung, Chae-Heon;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권3호
    • /
    • pp.207-213
    • /
    • 2015
  • PURPOSE. The purpose of this study was to examine the abutment screw stability of screw- and cement-retained implant-supported dental prosthesis (SCP) after simulated cement washout as well as the stability of SCP cements after complete loosening of abutment screws. MATERIALS AND METHODS. Thirty-six titanium CAD/CAM-made implant prostheses were fabricated on two implants placed in the resin models. Each prosthesis is a two-unit SCP: one screw-retained and the other cemented. After evaluating the passive fit of each prosthesis, all implant prostheses were randomly divided into 3 groups: screwed and cemented SCP (Control), screwed and non-cemented SCP (Group 1), unscrewed and cemented SCP (Group 2). Each prosthesis in Control and Group 1 was screwed and/or cemented, and the preloading reverse torque value (RTV) was evaluated. SCP in Group 2 was screwed and cemented, and then unscrewed (RTV=0) after the cement was set. After cyclic loading was applied, the postloading RTV was measured. RTV loss and decementation ratios were calculated for statistical analysis. RESULTS. There was no significant difference in RTV loss ratio between Control and Group 1 (P=.16). No decemented prosthesis was found among Control and Group 2. CONCLUSION. Within the limits of this in vitro study, the stabilities of SCP abutment screws and cement were not significantly changed after simulated cement washout or screw loosening.

Effects of the combination of bone morphogenetic protein-2 and nano-hydroxyapatite on the osseointegration of dental implants

  • Pang, KangMi;Seo, Young-Kwon;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제47권6호
    • /
    • pp.454-464
    • /
    • 2021
  • Objectives: This study aimed to investigate the in vitro osteoinductivity of the combination of bone morphogenetic protein-2 (BMP-2) and nanohydroxyapatite (nHAp) and the in vivo effects of implants coated with nHAp/BMP-2. Materials and Methods: To evaluate the in vitro efficacy of nHAp/BMP-2 on bone formation, bone marrow-derived mesenchymal stem cells (BM-MSCs) were seeded onto titanium disks coated with collagen (Col), Col/nHAp, or Col/nHAp/BMP-2. Protein levels were determined by a biochemical assay and reverse transcriptase-polymerase chain reaction. Stem cell differentiation was analyzed by flow cytometry. For in vivo studies with mice, Col, Col/nHAp, and Col/nHAp/BMP-2 were injected in subcutaneous pockets. Titanium implants or implants coated with Col/nHAp/BMP-2 were placed bilaterally on rabbit tibias and evaluated for 4 weeks. Results: In the in vitro study, BM-MSCs on Col/nHAp/BMP-2 showed reduced levels of CD73, CD90, and CD105 and increased levels of glycosaminoglycan, osteopontin, and alkaline phosphatase activity. After 4 weeks, the Col/nHAp/BMP-2 implant showed greater bone formation than the control (P=0.07), while no differences were observed in bone implant contact and removal torque. Conclusion: These results suggest that a combination of BMP-2 and an nHAp carrier would activate osseointegration on dental implant surfaces.

타이타늄 임프란트 골유착시 TGF-$\beta$와 IGF-I의 발현 (EXPRESSION OF TGF-$\beta$ AND IGF-I DURING OSSEOINTEGRATION OF TITANIUM IMPLANT)

  • 이인웅;송현철;지유진
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권2호
    • /
    • pp.123-130
    • /
    • 2005
  • Many of the molecular and genotypic events taking place at the osteoblast cell level during bone-implant integration are still largely unknown. The objective of this study was to examine expression patterns of TGF-$\beta$ and IGF-I related genes during bone-implant integration. Titanium implants with machined surface were placed into 8 rabbit tibias. At 3rd, 7th, 14th, 28th day after implantation, the expression pattern of TGF-$\beta$ and IGF-I genes in bone with or without implant was examined using reverse transcriptase-polymerase chain reaction (RT-PCR). At the same time, histomorphometric analysis was evaluated, respectively. The bone-to-implant contacts (BIC) of experimental groups were 5.2%, 6.2%, 6.6%, 24.6% at 3rd, 7th, 14th, 28th day. This indicated that newly formed bone increased at the implant surface in bone marrow space after implantation. The expressions of TGF-$\beta$ and IGF-I were higher in implantation groups than untreated control groups during all experimental days. The increased expression of TGF-$\beta$ and IGF-I genes may be associated with the increased bone-to-implant contact. This result provided the evidence for existing biologic differences in tissue response after implantation and helped us to understand molecular biologic processes in tissue-implant integration.