DOI QR코드

DOI QR Code

A comprehensive review of techniques for biofunctionalization of titanium

  • Hanawa, Takao (Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University)
  • Received : 2011.09.22
  • Accepted : 2011.11.10
  • Published : 2011.12.31

Abstract

A number of surface modification techniques using immobilization of biofunctional molecules of Titanium (Ti) for dental implants as well as surface properties of Ti and Ti alloys have been developed. The method using passive surface oxide film on titanium takes advantage of the fact that the surface film on Ti consists mainly of amorphous or low-crystalline and nonstoichiometric $TiO_2$. In another method, the reconstruction of passive films, calcium phosphate naturally forms on Ti and its alloys, which is characteristic of Ti. A third method uses the surface active hydroxyl group. The oxide surface immediately reacts with water molecules and hydroxyl groups are formed. The hydroxyl groups dissociate in aqueous solutions and show acidic and basic properties. Several additional methods are also possible, including surface modification techniques, immobilization of poly(ethylene glycol), and immobilization of biomolecules such as bone morphogenetic protein, peptide, collagen, hydrogel, and gelatin.

Keywords

References

  1. Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process--an alternative to plasma spraying. Biomaterials 2005;26:327-37. https://doi.org/10.1016/j.biomaterials.2004.02.029
  2. Kim KH, Ramaswamy N. Electrochemical surface modification of titanium in dentistry. Dent Mater J 2009;28:20-36. https://doi.org/10.4012/dmj.28.20
  3. Kelly EJ. Electrochemical-behavior of titanium. Mod Asp Electrochem 1982;14:319-424.
  4. Sundgren JE, Bodo P, Lundstrom I. Auger-electron spectroscopic studies of the interface between human-tissue and implants of titanium and stainless-steel. J Colloid Interface Sci 1986;110:9-20. https://doi.org/10.1016/0021-9797(86)90348-6
  5. Hanawa T, Ota M. Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 1991;12:767-74. https://doi.org/10.1016/0142-9612(91)90028-9
  6. Hanawa T. Titanium and Its Oxide Film: a substrate for formation of apatite. In: Davies JE, editor. The bone-biomaterial interface. Toronto: University of Toronto Press; 1991. p. 49-61.
  7. Hanawa T, Ota M. Characterization of surface-film formed on titanium in electrolyte using XPS. Appl Surf Sci 1992;55:269-76. https://doi.org/10.1016/0169-4332(92)90178-Z
  8. Hanawa T, Okuno O, Hamanaka H. Compositional change in surface of TI-ZR alloys in artificial bioliquid. J Jpn Inst Met 1992;56:1168-73. https://doi.org/10.2320/jinstmet1952.56.10_1168
  9. Hiromoto S, Hanawa T, Asami K. Composition of surface oxide film of titanium with culturing murine fibroblasts L929. Biomaterials 2004;25:979-86. https://doi.org/10.1016/S0142-9612(03)00620-3
  10. Tsutsumi Y, Nishimura D, Doi H, Nomura N, Hanawa T. Difference in surface reactions between titanium and zirconium in Hanks' solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization. Mater Sci Eng C-Biom Supramol Syst 2009;29:1702-8. https://doi.org/10.1016/j.msec.2009.01.016
  11. Parfitt GD. The surface of titanium dioxide. Prog Surf Membr Sci 1976;11:181-226.
  12. Westall J, Hohl H. A comparison of electrostatic models for the oxide/solution interface. Adv Colloid Interface Sci 1980;12:265-94. https://doi.org/10.1016/0001-8686(80)80012-1
  13. Healy TW, Fuerstenau DW. The oxide-water interface-Interreaction of the zero point of charge and the heat of immersion. J Colloid Sci 1965;20:376-86. https://doi.org/10.1016/0095-8522(65)90083-8
  14. Boehm HP. Acidic and basic properties of hydroxylated metal oxide surfaces. Discuss Faraday Soc 1971;(52):264-75.
  15. Mahato RI. Biomaterials for delivery and targeting of proteins and nucleic acids. Boca Raton: CRC Press; 2005.
  16. Kenausis GL, Voros J, Elbert DL, Huang NP, Hofer R, Ruiz-Taylor L, et al. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J Phys Chem 2000;104:3298-309. https://doi.org/10.1021/jp993359m
  17. Huang NP, Michel R, Voros J, Textor M, Hofer R, Rossi A, et al. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: surface-analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir 2001;17:489-98. https://doi.org/10.1021/la000736+
  18. Huang NP, Csucs G, Emoto K, Nagasaki Y, Kataoka K, Textor M, et al. Covalent attachment of novel poly(ethylene glycol)-poly(DL-lactic acid) copolymeric micelles to $TiO_2$ surfaces. Langmuir 2002;18:252-8. https://doi.org/10.1021/la0109563
  19. Zhang F, Kang ET, Neoh KG, Wang P, Tan KL. Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption. Biomaterials 2001;22:1541-8. https://doi.org/10.1016/S0142-9612(00)00310-0
  20. Ito Y, Hasuda H, Sakuragi M, Tsuzuki S. Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling. Acta Biomater 2007;3:1024-32. https://doi.org/10.1016/j.actbio.2007.05.010
  21. Tanaka Y, Doi H, Iwasaki Y, Hiromoto S, Yoneyama T, Asami K, et al. Electrodeposition of amine-terminated poly (ethylene glycol) to titanium surface. Mater Sci Eng C-Biom Supramol Syst 2007;27:206-12. https://doi.org/10.1016/j.msec.2006.03.007
  22. Tanaka Y, Doi H, Kobayashi E, Yoneyama T, Hanawa T. Determination of the immobilization manner of amineterminated poly(ethylene glycol) electrodeposited on a titanium surface with XPS and GD-OES. Mater Trans 2007;48:287-92. https://doi.org/10.2320/matertrans.48.287
  23. Tanaka Y, Saito H, Tsutsumi Y, Doi H, Imai H, Hanawa T. Active hydroxyl groups on surface oxide film of titanium, 316L stainless steel, and cobalt-chromium-molybdenum alloy and its effect on the immobilization of poly(ethylene glycol). Mater Trans 2008;49:805-11. https://doi.org/10.2320/matertrans.MRA2007317
  24. Tanaka Y, Matsuo Y, Komiya T, Tsutsumi Y, Doi H, Yoneyama T, et al. Characterization of the spatial immobilization manner of poly(ethylene glycol) to a titanium surface with immersion and electrodeposition and its effects on platelet adhesion. J Biomed Mater Res A 2010;92:350-8.
  25. Tanaka Y, Matin K, Gyo M, Okada A, Tsutsumi Y, Doi H, et al. Effects of electrodeposited poly(ethylene glycol) on biofilm adherence to titanium. J Biomed Mater Res A 2010;95:1105-13.
  26. Balachnder N, Sukenik CN. Monolayer transformation by nucleophilic-substitution- applications to the creation of new monolayer assemblies. Langmuir 1990;6:1621-7. https://doi.org/10.1021/la00101a001
  27. Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 1989;111:321-35. https://doi.org/10.1021/ja00183a049
  28. Dubois LH, Nuzzo RG. Synthesis, structure, and properties of model organic-surfaces. Ann Rev Phys Chem 1992;43:437-63. https://doi.org/10.1146/annurev.pc.43.100192.002253
  29. Ulman A. Formation and structure of self-assembled monolayers. Chem Rev 1996;96:1533-54. https://doi.org/10.1021/cr9502357
  30. Xiao SJ, Textor M, Spencer ND, Sigrist H. Covalent attachment of cell-adhesive, (Arg-Gly-Asp)-containing peptides to titanium surfaces. Langmuir 1998;14:5507-16. https://doi.org/10.1021/la980257z
  31. Gawalt ES, Avaltroni MJ, Danahy MP, Silverman BM, Hanson EL, Midwood KS, et al. Bonding organics to Ti alloys: facilitating human osteoblast attachment and spreading on surgical implant materials. Langmuir 2003;19:200-4. https://doi.org/10.1021/la0203436
  32. Brovelli D, Hahner G, Ruis L, Hofer R, Kraus G, Waldner A, et al. Highly oriented, self-assembled alkanephosphate monolayers on tantalum(V) oxide surfaces. Langmuir 1999;15:4324-7. https://doi.org/10.1021/la981758n
  33. Textor M, Ruiz L, Hofer R, Rossi K, Feldman K, Hahner G, et al. Structural chemistry of self-assembled monolayers of octadecylphosphoric acid on tantalum oxide surfaces. Langmuir 2000;16:3257-71. https://doi.org/10.1021/la990941t
  34. Fang JL, Wu NJ, Wang ZW, Li Y. XPS, AES and Raman studies of an antitarnish film on tin. Corrosion 1991;47:169-73. https://doi.org/10.5006/1.3585238
  35. Van Alsten JG. Self-assembled monolayers on engineering metals: structure, derivatization, and utility. Langmuir 1999;15:7605-14. https://doi.org/10.1021/la981694g
  36. Gawalt ES, Avaltroni MJ, Koch N, Schwartz J. Self-assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium. Langmuir 2001;17:5736-8. https://doi.org/10.1021/la010649x
  37. Verrier S, Pallu S, Bareille R, Jonczyk A, Meyer J, Dard M, et al. Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process. Biomaterials 2002;23:585-96. https://doi.org/10.1016/S0142-9612(01)00145-4
  38. Reyes CD, Petrie TA, Burns KL, Schwartz Z, García AJ. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 2007;28:3228-35. https://doi.org/10.1016/j.biomaterials.2007.04.003
  39. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110:673-87. https://doi.org/10.1016/S0092-8674(02)00971-6
  40. Bagno A, Piovan A, Dettin M, Chiarion A, Brun P, Gambaretto R, et al. Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides. Bone 2007;40:693-9. https://doi.org/10.1016/j.bone.2006.10.007
  41. Elmengaard B, Bechtold JE, Søballe K. In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials 2005;26:3521-6. https://doi.org/10.1016/j.biomaterials.2004.09.039
  42. Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials 2006;27:5561-71. https://doi.org/10.1016/j.biomaterials.2006.06.034
  43. Auernheimer J, Zukowski D, Dahmen C, Kantlehner M, Enderle A, Goodman SL, et al. Titanium implant materials with improved biocompatibility through coating with phosphonate-anchored cyclic RGD peptides. Chembiochem 2005;6:2034-40. https://doi.org/10.1002/cbic.200500031
  44. Ferris DM, Moodie GD, Dimond PM, Gioranni CW, Ehrlich MG, Valentini RF. RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials 1999;20:2323-31. https://doi.org/10.1016/S0142-9612(99)00161-1
  45. Xiao SJ, Textor M, Spencer ND, Wieland M, Keller B, Sigrist H. Immobilization of the cell-adhesive peptide Arg- Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment. J Mater Sci Mater Med 1997;8:867-72. https://doi.org/10.1023/A:1018501804943
  46. Silverman BM, Wieghaus KA, Schwartz J. Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy. Langmuir 2005;21:225-8. https://doi.org/10.1021/la048227l
  47. Schwartz J, Avaltroni MJ, Danahy MP, Silverman BM, Hanson EL, Schwarzbauer JE, et al. Cell attachment and spreading on metal implant materials. Mater Sci Eng C-Biom Supramol Syst 2003;23:395-400. https://doi.org/10.1016/S0928-4931(02)00310-7
  48. Tanaka Y, Saito H, Tsutsumi Y, Doi H, Nomura N, Imai H, et al. Effect of pH on the interaction between zwitterions and titanium oxide. J Colloid Interface Sci 2009;330:138-43. https://doi.org/10.1016/j.jcis.2008.10.042
  49. Oya K, Tanaka Y, Saito H, Kurashima K, Nogi K, Tsutsumi H, et al. Calcification by $MC_3T_3-E_1 $cells on RGD peptide immobilized on titanium through electrodeposited PEG. Biomaterials 2009;30:1281-6. https://doi.org/10.1016/j.biomaterials.2008.11.030
  50. Park JW, Kurashima K, Tustusmi Y, An CH, Suh JY, Doi H, et al. Bone healing of commercial oral implants with RGD immobilization through electrodeposited poly(ethylene glycol) in rabbit cancellous bone. Acta Biomater 2011;7:3222-9. https://doi.org/10.1016/j.actbio.2011.04.015
  51. Yamamichi N, Pugdee K, Chang WJ, Lee SY, Yoshinari M, Hayakawa T, et al. Gene expression monitoring in osteoblasts on titanium coated with fibronectin-derived peptide. Dent Mater J 2008;27:744-50. https://doi.org/10.4012/dmj.27.744
  52. Urist MR. Bone: formation by autoinduction. Science 1965;150:893-9. https://doi.org/10.1126/science.150.3698.893
  53. Lee YM, Nam SH, Seol YJ, Kim TI, Lee SJ, Ku Y, et al. Enhanced bone augmentation by controlled release of recombinant human bone morphogenetic protein-2 from bioabsorbable membranes. J Periodontol 2003;74:865-72. https://doi.org/10.1902/jop.2003.74.6.865
  54. Wikesjo UM, Lim WH, Thomson RC, Cook AD, Wozney JM, Hardwick WR. Periodontal repair in dogs: evaluation of a bioabsorbable space-providing macroporous membrane with recombinant human bone morphogenetic protein-2. J Periodontol 2003;74:635-47. https://doi.org/10.1902/jop.2003.74.5.635
  55. Seol YJ, Park YJ, Lee SC, Kim KH, Lee JY, Kim TI, et al. Enhanced osteogenic promotion around dental implants with synthetic binding motif mimicking bone morphogenetic protein (BMP)-2. J Biomed Mater Res A 2006;77:599-607.
  56. Puleo DA, Kissling RA, Sheu MS. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials 2002;23:2079-87. https://doi.org/10.1016/S0142-9612(01)00339-8
  57. Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, et al. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res 1998;40:324-35. https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<324::AID-JBM18>3.0.CO;2-L
  58. Nagai M, Hayakawa T, Fukatsu A, Yamamoto M, Fukumoto M, Nagahama F, et al. In vitro study of collagen coating of titanium implants for initial cell attachment. Dent Mater J 2002;21:250-60. https://doi.org/10.4012/dmj.21.250
  59. Viornery C, Guenther HL, Aronsson BO, Pechy P, Descouts P, Gratzel M. Osteoblast culture on polished titanium disks modified with phosphonic acids. J Biomed Mater Res 2002;62:149-55. https://doi.org/10.1002/jbm.10205
  60. Chang WJ, Ou KL, Lee SY, Chen JY, Abiko Y, Lin CT, et al. Type I collagen grafting on titanium surfaces using lowtemperature glow discharge. Dent Mater J 2008;27:340-6. https://doi.org/10.4012/dmj.27.340
  61. Kamata H, Suzuki S, Tanaka Y, Tsutsumi Y, Doi H, Nomura N, et al. Effects of pH, potential, and deposition time on the durability of collagen electrodeposited to titanium. Mater Trans 2011;52:81-9. https://doi.org/10.2320/matertrans.M2010311
  62. Pugdee K, Shibata Y, Yamamichi N, Tsutsumi H, Yoshinari M, Abiko Y, et al. Gene expression of $MC_3T_3-E_1$ cells on fibronectin-immobilized titanium using tresyl chloride activation technique. Dent Mater J 2007;26:647-55. https://doi.org/10.4012/dmj.26.647
  63. Abe Y, Hiasa K, Takeuchi M, Yoshida Y, Suzuki K, Akagawa Y. New surface modification of titanium implant with phospho-amino acid. Dent Mater J 2005;24:536-40. https://doi.org/10.4012/dmj.24.536
  64. Cadotte AJ, DeMarse TB. Poly-HEMA as a drug delivery device for in vitro neural networks on micro-electrode arrays. J Neural Eng 2005;2:114-22. https://doi.org/10.1088/1741-2560/2/4/007
  65. Belkas JS, Munro CA, Shoichet MS, Johnston M, Midha R. Long-term in vivo biomechanical properties and biocompatibility of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) nerve conduits. Biomaterials 2005;26:1741-9. https://doi.org/10.1016/j.biomaterials.2004.05.031
  66. Indolfi L, Causa F, Netti PA. Coating process and early stage adhesion evaluation of poly(2-hydroxy-ethyl-methacrylate) hydrogel coating of 316L steel surface for stent applications. J Mater Sci Mater Med 2009;20:1541-51. https://doi.org/10.1007/s10856-009-3699-z
  67. Fenelon AM, Breslin CB. The electropolymerization of pryrole at a CuNi electrode: corrosion protection properties. Corros Sci 2003;45:2837-2850. https://doi.org/10.1016/S0010-938X(03)00104-5
  68. Mengoli G. Feasibility of polymer film coatings through electroinitiated polymerization in aqueous medium. Adv Polym Sci 1979;33:1-31.
  69. De Giglio E, Guascito MR, Sabbatin L, Zambonin G. Electropolymerization of pyrrole on titanium substrates for the future development of new biocompatible surfaces. Biomaterials 2001;22:2609-16. https://doi.org/10.1016/S0142-9612(00)00449-X
  70. Rammelt U, Nguyen PT, Plieth W. Corrosion protection by ultrathin films of conducting polymers. Electrochimica Acta 2003;48:1257-62. https://doi.org/10.1016/S0013-4686(02)00833-2
  71. De Giglio E, De Gennaro L, Sabbatini L, Zambonin G. Analytical characterization of collagen- and/or hydroxyapatite-modified polypyrrole films electrosynthesized on Tisubstrates for the development of new bioactive surfaces. J Biomater Sci Polym Ed 2001;12:63-76. https://doi.org/10.1163/156856201744452
  72. De Giglio E, Cometa S, Satriano C, Sabbatini L, Zambonin PG. Electrosynthesis of hydrogel films on metal substrates for the development of coatings with tunable drug delivery performances. J Biomed Mater Res A 2009;88:1048-57.

Cited by

  1. Titanium as a Reconstruction and Implant Material in Dentistry: Advantages and Pitfalls vol.5, pp.9, 2011, https://doi.org/10.3390/ma5091528
  2. A Novel Silicon-Based Electrochemical Treatment to Improve Osteointegration of Titanium Implants vol.11, pp.2, 2013, https://doi.org/10.5301/jabfm.2012.9419
  3. Enhancing surface characteristics of Ti-6Al-4V for bio-implants using integrated anodization and thermal oxidation vol.2, pp.23, 2011, https://doi.org/10.1039/c3tb21731k
  4. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. vol.6, pp.17, 2014, https://doi.org/10.1039/c4nr02677b
  5. Stainless and Titanium Fibers as Non-degradable Three-dimensional Scaffolds for Bone Reconstruction vol.23, pp.4, 2011, https://doi.org/10.2485/jhtb.23.407
  6. Grafting of Cross-Linked Hydrogel Networks to Titanium Surfaces vol.6, pp.2, 2014, https://doi.org/10.1021/am404361v
  7. Specific ultraviolet-C irradiation energy for functionalization of titanium surface to increase osteoblastic cellular attachment vol.28, pp.9, 2011, https://doi.org/10.1177/0885328213511678
  8. Surface modification of titanium substrate with a novel covalently-bound copolymer thin film for improving its platelet compatibility vol.26, pp.2, 2011, https://doi.org/10.1007/s10856-015-5420-8
  9. Biofunctionalization strategies on tantalum-based materials for osseointegrative applications vol.26, pp.2, 2011, https://doi.org/10.1007/s10856-015-5445-z
  10. Influence of moisture on the electrical properties of solution processed multilayer high-k ZrO2-capacitors vol.5, pp.130, 2011, https://doi.org/10.1039/c5ra15782j
  11. Incorporation of Ca, P, and Si on bioactive coatings produced by plasma electrolytic oxidation: The role of electrolyte concentration and treatment duration vol.10, pp.4, 2015, https://doi.org/10.1116/1.4932579
  12. A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V vol.41, pp.5, 2015, https://doi.org/10.1563/aaid-joi-d-13-00340
  13. Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement vol.10, pp.None, 2011, https://doi.org/10.2147/ijn.s82166
  14. Ultraviolet-C irradiation to titanium implants increases peri-implant bone formation without impeding mineralization in a rabbit femur model vol.73, pp.4, 2011, https://doi.org/10.3109/00016357.2014.956332
  15. Calcification of MC3T3-E1 cells on titanium and zirconium vol.34, pp.5, 2015, https://doi.org/10.4012/dmj.2015-018
  16. Surface modification of titanium with thermally treated polydimethylsiloxane coating and the effect on resin to titanium adhesion vol.47, pp.1, 2011, https://doi.org/10.1002/sia.5681
  17. Chitosan/siCkip-1 biofunctionalized titanium implant for improved osseointegration in the osteoporotic condition vol.5, pp.None, 2015, https://doi.org/10.1038/srep10860
  18. Comparison of two dental implant surface modifications on implants with same macrodesign: an experimental study in the pelvic sheep model vol.26, pp.8, 2011, https://doi.org/10.1111/clr.12411
  19. Controlled formation of anatase and rutile TiO2thin films by reactive magnetron sputtering vol.5, pp.9, 2011, https://doi.org/10.1063/1.4931925
  20. Black N/H‐TiO2 Nanoplates with a Flower‐Like Hierarchical Architecture for Photocatalytic Hydrogen Evolution vol.9, pp.19, 2011, https://doi.org/10.1002/cssc.201600854
  21. Production of a biofunctional titanium surface using plasma electrolytic oxidation and glow-discharge plasma for biomedical applications vol.11, pp.1, 2011, https://doi.org/10.1116/1.4944061
  22. Electrochemical Activity of a Blue Anatase TiO2 Nanotube Array for the Oxygen Evolution Reaction in Alkaline Water Electrolysis vol.7, pp.1, 2011, https://doi.org/10.5229/jecst.2016.7.1.76
  23. Formation of a thermally stable bilayer of coadsorbed intact and deprotonated thymine exploiting the surface corrugation of rutile TiO2(110) vol.18, pp.30, 2011, https://doi.org/10.1039/c6cp02541b
  24. The influence of direct laser metal sintering implants on the early stages of osseointegration in diabetic mini-pigs vol.12, pp.None, 2011, https://doi.org/10.2147/ijn.s138615
  25. A New Green Titania with Enhanced NIR Absorption for Mitochondria-Targeted Cancer Therapy vol.7, pp.6, 2011, https://doi.org/10.7150/thno.17247
  26. Markedly Enhanced Surface Hydroxyl Groups of TiO 2 Nanoparticles with Superior Water-Dispersibility for Photocatalysis vol.10, pp.6, 2011, https://doi.org/10.3390/ma10050566
  27. Oriented bone regenerative capacity of octacalcium phosphate/gelatin composites obtained through two‐step crystal preparation method vol.105, pp.5, 2011, https://doi.org/10.1002/jbm.b.33640
  28. Collagen immunoassay as a method to optimise surface functionalisation vol.14, pp.9, 2017, https://doi.org/10.1002/ppap.201600213
  29. Polysulfide Binding to Several Nanoscale Magnéli Phases Synthesized in Carbon for Long-Life Lithium-Sulfur Battery Cathodes vol.11, pp.11, 2011, https://doi.org/10.1002/cssc.201800484
  30. Influence of Sb5+ as a Double Donor on Hematite (Fe3+) Photoanodes for Surface-Enhanced Photoelectrochemical Water Oxidation vol.10, pp.19, 2018, https://doi.org/10.1021/acsami.8b02147
  31. In Vivo Periodontium Formation Around Titanium Implants Using Periodontal Ligament Cell Sheet vol.24, pp.15, 2018, https://doi.org/10.1089/ten.tea.2017.0405
  32. Recent Progress in Research and Development of Metallic Structural Biomaterials with Mainly Focusing on Mechanical Biocompatibility vol.59, pp.1, 2011, https://doi.org/10.2320/matertrans.m2017180
  33. Rational Design of Amphiphilic Peptides and Its Effect on Antifouling Performance vol.19, pp.9, 2011, https://doi.org/10.1021/acs.biomac.8b00587
  34. Custom‐made root‐analogue zirconia implants: A scoping review on mechanical and biological benefits vol.106, pp.8, 2011, https://doi.org/10.1002/jbm.b.34147
  35. TiO Phase Stabilized into Freestanding Nanofibers as Strong Polysulfide Immobilizer in Li-S Batteries: Evidence for Lewis Acid-Base Interactions vol.10, pp.44, 2011, https://doi.org/10.1021/acsami.8b11029
  36. A TiO2/C catalyst having biomimetic channels and extremely low Pt loading for formaldehyde oxidation vol.9, pp.7, 2011, https://doi.org/10.1039/c8ra10314c
  37. Effect of Surface Treatment of Multi-Directionally Forged (MDF) Titanium Implant on Bone Response vol.9, pp.2, 2011, https://doi.org/10.3390/met9020230
  38. Chemical and Biological Roles of Zinc in a Porous Titanium Dioxide Layer Formed by Micro-Arc Oxidation vol.9, pp.11, 2011, https://doi.org/10.3390/coatings9110705
  39. Mesoporous hollow black TiO2 with controlled lattice disorder degrees for highly efficient visible-light-driven photocatalysis vol.9, pp.63, 2011, https://doi.org/10.1039/c9ra08148h
  40. A titanium dioxide/nitrogen-doped graphene quantum dot nanocomposite to mitigate cytotoxicity: synthesis, characterisation, and cell viability evaluation vol.10, pp.37, 2011, https://doi.org/10.1039/d0ra02907f
  41. Synthesis of reduced C,N-TiO2 for catalytic oxidation of HCHO indoors vol.73, pp.13, 2011, https://doi.org/10.1080/00958972.2020.1798416
  42. Demonstration of a SiC Protective Coating for Titanium Implants vol.13, pp.15, 2011, https://doi.org/10.3390/ma13153321
  43. A Comprehensive Review on the Corrosion Pathways of Titanium Dental Implants and Their Biological Adverse Effects vol.10, pp.9, 2020, https://doi.org/10.3390/met10091272
  44. Zirconium-based metallic glass and zirconia coatings to inhibit bone formation on titanium vol.15, pp.6, 2011, https://doi.org/10.1088/1748-605x/aba23a
  45. Green Synthesized Palladium Coated Titanium Nanotube Arrays for Simultaneous Azo-Dye Degradation and Hydrogen Production vol.10, pp.11, 2011, https://doi.org/10.3390/catal10111330
  46. Superficial treatment by anodization in order to obtain titanium oxide nanotubes applicable in implantology vol.25, pp.4, 2020, https://doi.org/10.1590/s1517-707620200004.1173
  47. TiO2 Nanowires for Humidity-Stable Gas Sensors for Toluene and Xylene vol.4, pp.1, 2011, https://doi.org/10.1021/acsanm.0c02963
  48. Pan‐Milling: Instituting an All‐Solid‐State Technique for Mechanical Metastable Oxides as High‐Performance Lithium‐Ion Battery Anodes vol.11, pp.14, 2021, https://doi.org/10.1002/aenm.202100310
  49. Ag- and Sr-enriched nanofibrous titanium phosphate phases as potential antimicrobial cement and coating for a biomedical alloy vol.126, pp.None, 2011, https://doi.org/10.1016/j.msec.2021.112168
  50. Cu-Co Co-Doped Microporous Coating on Titanium with Osteogenic and Antibacterial Properties vol.17, pp.7, 2011, https://doi.org/10.1166/jbn.2021.3120
  51. In Vitro Corrosion of SiC-Coated Anodized Ti Nano-Tubular Surfaces vol.12, pp.3, 2011, https://doi.org/10.3390/jfb12030052
  52. Mussel-Inspired Carboxymethyl Chitosan Hydrogel Coating of Titanium Alloy with Antibacterial and Bioactive Properties vol.14, pp.22, 2011, https://doi.org/10.3390/ma14226901
  53. Osteoblastic response to biomaterials surfaces: Extracellular matrix proteomic analysis vol.110, pp.1, 2011, https://doi.org/10.1002/jbm.b.34900
  54. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing vol.96, pp.None, 2011, https://doi.org/10.1016/j.jmst.2021.04.025
  55. Effect of OH species in the oxynitride titanium formation during plasma-assisted thermochemical treatment vol.430, pp.None, 2011, https://doi.org/10.1016/j.surfcoat.2021.127990