DOI QR코드

DOI QR Code

The Effects of a Er:YAG Laser on Machined, Sand-Blasted and Acid-Etched, and Resorbable Blast Media Titanium Surfaces Using Confocal Microscopy and Scanning Electron Microscopy

  • Park, Jun-Beom (Department of Periodontics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Kim, Do-Young (Kim & Jeon Dental Clinic) ;
  • Ko, Youngkyung (Department of Periodontics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
  • Received : 2016.06.09
  • Accepted : 2016.06.27
  • Published : 2016.06.30

Abstract

Purpose: Laser treatment has become a popular method in implant dentistry, and lasers have been used for the decontamination of implant surfaces when treating peri-implantitis. This study was performed to evaluate the effects of an Erbium-doped:Yttrium-Aluminum-Garnet (Er:YAG) laser with different settings on machined (MA), sand-blasted and acid-etched (SA), and resorbable blast media (RBM) titanium surfaces using scanning electron microscopy and confocal microscopy. Materials and Methods: Four MA, four SA, and four RBM discs were either irradiated at 40 mJ/20 Hz, 90 mJ/20 Hz, or 40 mJ/25 Hz for 2 minutes. The specimens were evaluated with scanning electron microscopy and confocal microscopy. Result: The untreated MA surface demonstrated uniform roughness with circumferential machining marks, and depressions were observed after laser treatment. The untreated SA surface demonstrated a rough surface with sharp spikes and deep pits, and the laser produced noticeable changes on the SA titanium surfaces with melting and fusion. The untreated RBM surface demonstrated a rough surface with irregular indentation, and treatment with the laser produced changes on the RBM titanium surfaces. The Er:YAG laser produced significant changes on the roughness parameters, including arithmetic mean height of the surface (Sa) and maximum height of the surface (Sz), of the MA and SA surfaces. However, the Er:YAG laser did not produce notable changes on the roughness parameters, such as Sa and Sz, of the RBM surfaces. Conclusion: This study evaluated the effects of an Er:YAG laser on MA, SA, and RBM titanium discs using confocal microscopy and scanning electron microscopy. Treatment with the laser produced significant changes in the roughness of MA and SA surfaces, but the roughness parameters of the RBM discs were not significantly changed. Further research is needed to evaluate the efficiency of the Er:YAG laser in removing the contaminants, adhering bacteria, and the effects of treatment on cellular attachment, proliferation, and differentiation.

Keywords

References

  1. Stubinger S, Etter C, Miskiewicz M, Homann F, Saldamli B, Wieland M, Sader R. Surface alterations of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Int J Oral Maxillofac Implants. 2010; 25: 104-11.
  2. Romanos GE, Everts H, Nentwig GH. Effects of diode and Nd:YAG laser irradiation on titanium discs: a scanning electron microscope examination. J Periodontol. 2000; 71: 810-5. https://doi.org/10.1902/jop.2000.71.5.810
  3. Hale GM, Querry MR. Optical constants of water in the 200-nm to 200-microm wavelength region. Appl Opt. 1973; 12: 555-63. https://doi.org/10.1364/AO.12.000555
  4. Takasaki AA, Aoki A, Mizutani K, Kikuchi S, Oda S, Ishikawa I. Er:YAG laser therapy for periimplant infection: a histological study. Lasers Med Sci. 2007; 22: 143-57. https://doi.org/10.1007/s10103-006-0430-x
  5. Renvert S, Lindahl C, Roos Jansaker AM, Persson GR. Treatment of peri-implantitis using an Er:YAG laser or an air-abrasive device: a randomized clinical trial. J Clin Periodontol. 2011; 38: 65-73. https://doi.org/10.1111/j.1600-051X.2010.01646.x
  6. Shin SI, Lee EK, Kim JH, Lee JH, Kim SH, Kwon YH, Herr Y, Chung JH. The effect of Er:YAG laser irradiation on hydroxyapatite-coated implants and fluoride-modified TiO2-blasted implant surfaces: a microstructural analysis. Lasers Med Sci. 2013; 28: 823-31. https://doi.org/10.1007/s10103-012-1162-8
  7. Shin SI, Min HK, Park BH, Kwon YH, Park JB, Herr Y, Heo SJ, Chung JH. The effect of Er:YAG laser irradiation on the scanning electron microscopic structure and surface roughness of various implant surfaces: an in vitro study. Lasers Med Sci. 2011; 26: 767-76. https://doi.org/10.1007/s10103-010-0819-4
  8. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. 2004; 83: 529-33. https://doi.org/10.1177/154405910408300704
  9. Mazzitelli C, Ferrari M, Toledano M, Osorio E, Monticelli F, Osorio R. Surface roughness analysis of fiber post conditioning processes. J Dent Res. 2008; 87: 186-90. https://doi.org/10.1177/154405910808700204
  10. Park JB, Jeon Y, Ko Y. Effects of titanium brush on machined and sand-blasted/acid-etched titanium disc using confocal microscopy and contact profilometry. Clin Oral Implants Res. 2015; 26: 130-6.
  11. Eliades T, Gioka C, Eliades G, Makou M. Enamel surface roughness following debonding using two resin grinding methods. Eur J Orthod. 2004; 26: 333-8. https://doi.org/10.1093/ejo/26.3.333
  12. Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants. 2010; 25: 63-74.
  13. Lee GJ, Park KH, Park YG, Park HK. A quantitative AFM analysis of nano-scale surface roughness in various orthodontic brackets. Micron. 2010; 41: 775-82. https://doi.org/10.1016/j.micron.2010.05.013
  14. Popovich VA, Riemslag AC, Janssen M, Bennett IJ, Richardson IM. Characterization of multicrystalline silicon solar wafers fracture strength and influencing factors. Int J Mater Sci. 2013; 3: 9-17.
  15. Valverde GB, Jimbo R, Teixeira HS, Bonfante EA, Janal MN, Coelho PG. Evaluation of surface roughness as a function of multiple blasting processing variables. Clin Oral Implants Res. 2013; 24: 238-42. https://doi.org/10.1111/j.1600-0501.2011.02392.x
  16. Loberg J, Mattisson I, Hansso S, Ahlberg E. Characterisation of titanium dental implants I: critical assessment of surface roughness parameters. Open Biomater J. 2010; 2: 18-35. https://doi.org/10.2174/1876502501002010018
  17. Dong WP, Sullivan PJ, Stout KJ. Comprehensive study of parameters for characterising threedimensional surface topography: IV: parameters for characterising spatial and hybrid properties. Wear. 1994; 178: 45-60. https://doi.org/10.1016/0043-1648(94)90128-7
  18. Dong WP, Sullivan PJ, Stout KJ. Comprehensive study of parameters for characterising threedimensional surface topography: III: parameters for characterising amplitude and some functional properties. Wear. 1994; 178: 29-43. https://doi.org/10.1016/0043-1648(94)90127-9
  19. Dohan Ehrenfest DM, Coelho PG, Kang BS, Sul YT, Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol. 2010; 28: 198-206. https://doi.org/10.1016/j.tibtech.2009.12.003
  20. Matsuyama T, Aoki A, Oda S, Yoneyama T, Ishikawa I. Effects of the Er:YAG laser irradiation on titanium implant materials and contaminated implant abutment surfaces. J Clin Laser Med Surg. 2003; 21: 7-17. https://doi.org/10.1089/10445470360516680
  21. Taniguchi Y, Aoki A, Mizutani K, Takeuchi Y, Ichinose S, Takasaki AA, Schwarz F, Izumi Y. Optimal Er:YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants. Lasers Med Sci. 2013; 28: 1057-68. https://doi.org/10.1007/s10103-012-1171-7