• Title/Summary/Keyword: tiny OS

Search Result 156, Processing Time 0.022 seconds

Implementation of CoAP Protocol for USN Environment (CoAP 프로토콜 구현과 USN 환경 적용)

  • Min, Kyoung-Ju;Kim, Yong-Woon;Yoo, Sang-Keun;Kim, Hyoung-Jun;Jung, Heo-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1189-1197
    • /
    • 2011
  • To manage sensing information such as temperature, humidity and so on efficiently, it is need to use special purpose protocol. In this reason, IETF WG proposed CoAP protocol, and it is on Internet draft. If it is possible to work on a specific protocol, sensor end-nodes and network devices will be managed efficiently. However, end-nodes have restricted resources, it is hard to applying to CoAP protocol directly. In this paper we analyse a CoAP protocol stack for USN. To verify this protocol quickly, at first we implemented CoAP protocol stack over PC environments. After the logical verification, we applied this protocol to the USN environment. To do this, we ported CoAP protocol to Cygwin environment, and proposed solutions for hardware dependencies, and it is verified through experiments.

RSSI based Intelligent Indoor Location Estimation Robot using Wireless Sensor Network technology (무선센서네트워크 기술을 활용한 RSSI기반의 지능형 실내위치추정 로봇)

  • Seo, Won-Kyo;Jang, Seong-Gyun;Shin, Kwang-Sik;Lee, Eun-Ah;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1195-1200
    • /
    • 2007
  • This paper describes indoor location estimation intelligent robot. Indoor location estimation function using RSSI based indoor location estimation system and wireless sensor networks were implemented in the robot. Spartan III(Xilinx, U.S.A.) was used as a main control device in the mobile robot and the current direction data was collected in the indoor location estimation system. The data was transferred to the wireless sensor network node attached to the mobile robot through Zigbee/IEEE 802.15.4, a wireless communication. After receiving it, with the data of magnetic compass the node is aware of and senses the direction the robot head for and the robot moves to its destination. Indoor location estimation intelligent robot is can be moved efficiently and actively without obstacle on flat ground to the appointment position by user.

Reliable Measurement and Analysis System for Ubiquitous Healthcare (고신뢰 유비쿼터스 헬스케어 데이터 측정 및 분석 시스템)

  • Jung, Sang-Joong;Seo, Yong-Su;Kim, Jong-Jin;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.293-297
    • /
    • 2009
  • This paper describes a real-time reliable measurement and analysis system for ubiquitous healthcare based on IEEE802.15.4 standard. In order to obtain and monitor physiological body signals continuously, wearable pulse oximeter is designed in wrist that could used to measure oxygen saturation of a patient unobtrusively. The measured data was transferred to a central PC or server by using wireless sensor nodes via a wireless sensor network for storage and analysis purposes. LabVIEW server program was designed to monitor and process the measured photoplethysmogram(PPG) to accelerated plethysmogram(APG) by appling second order derivatives in server PC. These experimental results demonstrate that APG can precisely describe the features of an individual's PPG and be used as estimation of vascular elasticity for blood circulation.

  • PDF

Design of IoT-based Energy Monitoring System for Residential Building (IoT 기반 주택형 건물 에너지 모니터링 시스템 설계)

  • Lee, Min-Goo;Jung, Kyung-Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1223-1230
    • /
    • 2021
  • Recently, energy resource management is a major concern around the world. Energy management activities minimize environmental impacts of the energy production. This paper presents design and prototyping of a home electric energy monitoring system that provides residential consumers with real time information about their electricity use. The developed system is composed of an in-house sensing system and a server system. The in-home sensing system is a set of wireless smart plug which have an AC power socket, a relay to switch the socket ON/OFF, a CT sensor to sense current of load appliance and a Kmote. The Kmote is a wireless communication interface based on TinyOS. Each sensing node sends its detection signal to a home gateway via wireless link. The home gateway stores the received signals into a remote database. The server system is composed of a database server and a web server, which provides web-based monitoring system to residential consumers. We analyzed and presented energy consumption data from electrical appliances for 3 months in home. The experimental results show the promising possibilities to estimate the energy consumption patterns and the current status.

Efficient Transmission Structure and Key Management Mechanism Using Key Provisioning on Medical Sensor Networks (의료 센서 네트워크에서의 효율적인 전송 구조 및 Key Provisioning을 사용한 키 관리 기법 연구)

  • Seo, Jae-Won;Kim, Mi-Hui;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.3
    • /
    • pp.285-298
    • /
    • 2009
  • According to the development of ubiquitous technologies, sensor networks is used in various area. In particular, medical field is one of the significant application areas using sensor networks, and recently it has come to be more important according to standardization of the body sensor networks technology. There are special characteristics of their own for medical sensor networks, which are different from the one of sensor networks for general application or environment. In this paper, we propose a hierarchical medical sensor networks structure considering own properties of medical applications, and also introduce transmission mechanism based on hierarchical structure. Our mechanism uses the priority and threshold value for medical sensor nodes considering patient's needs and health condition. Through this way Cluster head can transmit emergency data to the Base station rapidly. We also present the new key establishment mechanism based on key management mechanism which is proposed by L. Eschenauer and V. Gligor for our proposed structure and transmission mechanism. We use key provisioning for emergency nodes that have high priority based on patients' health condition. This mechanism guarantees the emergency nodes to establish the key and transmit the urgent message to the new cluster head more rapidly through preparing key establishment with key provisioning. We analyze the efficiency of our mechanism through comparing the amount of traffic and energy consumption with analysis and simulation with QualNet simulator. We also implemented our key management mechanism on TmoteSKY sensor board using TinyOS 2.0 and through this experiments we proved that the new mechanism could be actually utilized in network design.

TeloSIM: Instruction-level Sensor Network Simulator for Telos Sensor Node (TeloSIM: Telos 형 센서노드를 위한 명령어 수준 센서네트워크 시뮬레이터)

  • Joe, Hyun-Woo;Kim, Hyung-Shin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1021-1030
    • /
    • 2010
  • In the sensor network, many tiny nodes construct Ad-Hoc network using wireless interface. As this type of system consists of thousands of nodes, managing each sensor node in real world after deploying them is very difficult. In order to install the sensor network successfully, it is necessary to verify its software using a simulator beforehand. In fact Sensor network simulators require high fidelity and timing accuracy to be used as a design, implementation, and evaluation tool of wireless sensor networks. Cycle-accurate, instruction-level simulation is the known solution for those purposes. In this paper, we developed an instruction-level sensor network simulator for Telos sensor node as named TeloSlM. It consists of MSP430 and CC2420. Recently, Telos is the most popular mote because MSP430 can consume the minimum energy in recent motes and CC2420 can support Zigbee. So that TeloSlM can provide the easy way for the developers to verify software. It is cycle-accurate in instruction-level simulator that is indispensable for OS and the specific functions and can simulate scalable sensor network at the same time. In addition, TeloSlM provides the GUI Tool to show result easily.