• Title/Summary/Keyword: timing error

Search Result 383, Processing Time 0.023 seconds

Design of Timing Register Structure for Area Optimization of High Resolution and Low Power SAR ADC (고해상도 저전력 SAR ADC의 면적 최적화를 위한 타이밍 레지스터 구조 설계)

  • Min, Kyung-Jik;Kim, Ju-Sung;Cho, Hoo-Hyun;Pu, Young-Gun;Hur, Jung;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.47-55
    • /
    • 2010
  • In this paper, a timing register architecture using demultiplexer and counter is proposed to reduce the area of the high resolution SAR type analog to digital converter. The area and digital power consumption of the conventional timing register based on the shift register is drastically increased, as the resolution is increased. On the other hand, the proposed architecture results in reduction of the area and the power consumption of the error correction logic of the SAR ADC. This chip is implemented with 0.18 um CMOS process. The area is reduced by 5.4 times and the digital power consumption is minimized compared with the conventional one. The 12 bits SAR ADC shows ENOB of 11 bits, power consumption of 2 mW, and conversion speed of 1 MSPS. The die area is $1 mm{\times}1mm$.

Performance Analysis of Asynchronous OFDMA Uplink Systems with Timing Misalignments over Frequency-selective Fading Channels (주파수 선택적 페이딩 채널에서 시간오차에 의한 비동기 OFDMA 상향 시스템의 성능 분석)

  • Park, Myong-Hee;Ko, Kyun-Byoung;Park, Byung-Joon;Lee, Young-Il;Hong, Dae-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.34-42
    • /
    • 2005
  • In orthogonal frequency-division multiple access (OFDMA) uplink environments, asynchronously received signals can cause multiple access interference (MAI). This paper focuses on the performance degradation due to the MAI over frequency-selective fading channels. We first introduce the timing misalignment, which is defined as the relative timing difference between asynchronous timing error of uplink user and reference time of the base station, and analytically derive the MAI using the power delay profile of wide-sense stationary uncorrelated scattering (WSSUS) channel model. Then, the effective signal-to-noise ratio (SNR) and the average symbol error probability (SEP) are derived. The proposed analytical results are verified through simulations with respect to the region of the timing misalignment and the number of asynchronous users.

Position Estimation Technique of High Speed Vehicle Using TLM Timing Synchronization Signal (TLM 시각 동기 신호를 이용한 고속 이동체의 위치 추정)

  • Jin, Mi-Hyun;Koo, Ddeo-Ol-Ra;Kim, Bok-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.319-324
    • /
    • 2022
  • If radio interference occurs or there is no navigation device, radio navigation of high-speed moving object becomes impossible. Nevertheless, if there are multiple ground stations and precise range measurement between the high-speed moving object and the ground station can be secured, it is possible to estimate the position of moving object. This paper proposes a position estimation method using high-precision TDOA measurement generated using TLM signal. In the proposed method, a common error of moving object is removed using the TDOA measurements. The measurements is generated based on TLM signal including SOQPSK PN symbol capable of precise timing synchronization. Therefore, since precise timing synchronization of the system has been performed, the timing error between ground stations has a very small value. This improved the position estimation performance by increasing the accuracy of the measured values. The proposed method is verified through software-based simulation, and the performance of estimated position satisfies the target performance.

Statistical Timing Analysis of Partially-Depleted SOI Gates (부분 공핍형 SOI 게이트의 통계적 타이밍 분석)

  • Kim, Kyung-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.31-36
    • /
    • 2007
  • This paper presents a novel statistical characterization for accurate timing analysis in Partially-Depleted Silicon-On-Insulator (PD-SOI) circuits in BSIMSOI3.2 100nm technology. The proposed timing estimate algorithm is implemented in Matlab, Hspice, and C, and it is applied to ISCAS85 benchmarks. The results show that the error is within 5% compared with Monte Carlo simulation results.

Hardware Implementation of Time Skew Calibration Block for Time Interleaved ADC (TI ADC를 위한 시간 왜곡 교정 블록의 하드웨어 구현)

  • Khan, Sadeque Reza;Choi, Goangseog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.3
    • /
    • pp.35-42
    • /
    • 2017
  • This paper presents hardware implementation of background timing-skew calibration technique for time-interleaved analog-to-digital converters (TI ADCs). The timing skew between any two adjacent analog-digital (A/D) channels is detected by using pure digital Finite Impulse Response (FIR) delay filter. This paper includes hardware architecture of the system, main units and small sub-blocks along with control logic circuits. Moreover, timing diagrams of logic simulations using ModelSim are provided and discussed for further understanding about simulations. Simulation process in MATLAB and Verilog is also included and provided with basic settings need to be done. For hardware implementation it not practical to work with all samples. Hence, the simulation is conducted on 512 TI ADC output samples which are stored in the buffer simultaneously and the correction arithmetic is done on those samples according to the time skew algorithm. Through the simulated results, we verified the implemented hardware is working well.

A Study on Deep Reinforcement Learning Framework for DME Pulse Design

  • Lee, Jungyeon;Kim, Euiho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.113-120
    • /
    • 2021
  • The Distance Measuring Equipment (DME) is a ground-based aircraft navigation system and is considered as an infrastructure that ensures resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS) outage. The main problem of DME as a GNSS back up is a poor positioning accuracy that often reaches over 100 m. In this paper, a novel approach of applying deep reinforcement learning to a DME pulse design is introduced to improve the DME distance measuring accuracy. This method is designed to develop multipath-resistant DME pulses that comply with current DME specifications. In the research, a Markov Decision Process (MDP) for DME pulse design is set using pulse shape requirements and a timing error. Based on the designed MDP, we created an Environment called PulseEnv, which allows the agent representing a DME pulse shape to explore continuous space using the Soft Actor Critical (SAC) reinforcement learning algorithm.

The Convergence Effects of Visual Stimulus Velocity and Basketball Pass Types on Anticipation Timing Performance (시각적 자극 속도에 대한 농구패스 유형이 예측 타이밍 수행에 미치는 융합적 효과)

  • Hong, Seung-Bun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.325-332
    • /
    • 2017
  • This study was performed to investigate the effects of receiver's moving speed and pass types on anticipation timing response. Ten subjects were required to make a total of 24 passes in coincidence with an experimentally manipulated moving light signal in randomly three different conditions by performing chest and bound pass. Results of analyses revealed AE, CE, and VE increased as moving velocity became constant-acceleration condition. In addition, chest pass was more accuracy and consistency than bound pass on AE and CE. These findings indicated that moving velocity and pass type served as the major determination of coincident timing response on passing in basketball.

Digital Fine Timing Tracker for Correlation Detection Receiver in IR-UWB Communication System (IR-UWB 시스템에서 상관 검출 수신기를 위한 디지털 미세 타이밍 추적기)

  • Ko Seok-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9C
    • /
    • pp.905-913
    • /
    • 2006
  • In the impulse radio ultra-wideband communication systems, the residual timing offset exists when the acquisition and tracking of the timing synchronization is well done. And the offset affects the performance of the system dramatically. In order to compensate the offset, we present the digital phase-locked loop that uses the reference signal in the correlation detection receiver. First, we show the degradation of BER performance that is caused by the offset, and then compensation process of the timing tracker and performance improvement. In this paper, the timing detector in the tracker operates at the sampling period of frame level uses the correlation between received and reference signal. Also, we present the performance comparison by using the computer simulation results for different Gaussian monocycle pulses.

Considerations on Ionospheric Correction and Integrity Algorithm for Korean SBAS

  • Bang, Eugene;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.17-23
    • /
    • 2014
  • Satellite Based Augmentation Systems (SBAS) provide ionospheric corrections at geographically five degree-spaced Ionospheric Grid Points (IGPs) and confidence bounds, called Grid Ionospheric Vertical Errors (GIVEs), on the error of those corrections. Since the ionosphere is one of the largest error sources which may threaten the safety of a single frequency Global Navigation Satellite System (GNSS) user, the ionospheric correction and integrity bound algorithm is essential for the development of SBAS. The current single frequency based SBAS, already deployed or being developed, implement the ionospheric correction and error bounding algorithm of the Wide Area Augmentation System (WAAS) developed for use in the United States. However, the ionospheric condition is different for each region and it could greatly degrade the performance of SBAS if its regional characteristics are not properly treated. Therefore, this paper discusses key factors that should be taken into consideration in the development of the ionospheric correction and integrity bound algorithm optimized for the Korean SBAS. The main elements of the conventional GIVE monitor algorithm are firstly reviewed. Then, this paper suggests several areas which should be investigated to improve the availability of the Korean SBAS by decreasing the GIVE value.

An Error Analysis of GPS Positioning (GPS를 이용한 위치 결정에서의 오차 해석)

  • Park, Chansik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.550-557
    • /
    • 2001
  • There are several applications and error analysis methods using GPS(Global Positioning System) In most analysis positioning and timing errors are represented as the multiplication of DOP(Dilution Of Precision) and measurement errors, which are affected by the receiver and measurement type. Therefore, lots of DOPs are defined and used to analyze and predict the performance of positioning and timing systems. In this paper, the relationships between these DOPs are investigated in detail, The relationships between GDOP(Geometric DOP), PDOP(Position DOP) and TDOP(Time DOP) in the absolute positioning are de-rived. Using these relationships, the affect of clock bias is analyzed. The relationships between RGDOP(Relative DOP) and PDOP are also derived in relative positioning where the single difference and double dif-ference techniques are used. From the results, it is expected that using the common clock will give better performance when the single difference technique is used while the effects of clock is eliminate when the double difference technique is used. Finally, the error analyses of dual frequency receivers show that the narrow lane measurements give more accurate results than wide line of or L1. L2 independent measurements.

  • PDF