• Title/Summary/Keyword: time-intensity evaluation

Search Result 261, Processing Time 0.027 seconds

Characterization of Debris Flow at Various Topographical Division Sizes (지형분할 격자크기에 따른 토석류 흐름 특성)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.3
    • /
    • pp.49-55
    • /
    • 2015
  • The rainfall pattern, rainfall intensity as well as topographical conditions used for the analysis of debris flow affect, in general, the magnitude of debris flow and flow velocity, when debris flow occurs. The consideration of topographical conditions implies that the topography is equally divided into grids and the slope of inside the grid is computed as an average, leading to, in turn, obtain the closer results to the reality as the grid is smaller in the case of the severely bended topography. Although the size of grid should be as small as possible so as for more accurate analysis of debris flow, the analysis of debris flow has been so far conducted by using sparsely divided grids due to the limitation of analysis algorithm, computational ability and running time. So, it is necessary to suggest an appropriate grid size for the practical approaches. Therefore, this study presents the evaluation of the effect of the size of a grid on the debris flow besides the factors which referred to the previous studies such as accumulated rainfall, rainfall intensity and rainfall duration time. From this, it enables to suggest a rational and practical grid size for topography to be divided.

Seismic Fragility Analysis for Probabilistic Performance Evaluation of PSC Box Girder Bridges (확률론적 내진성능평가를 위한 PSC Box 거더교의 지진취약도 해석)

  • Song, Jong-Keol;Jin, He-Shou;Lee, Tae-Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.119-130
    • /
    • 2009
  • Seismic fragility curves of a structure represent the probability of exceeding the prescribed structural damage state for a given various levels of ground motion intensity such as peak ground acceleration (PGA), spectral acceleration ($S_a$) and spectral displacement ($S_d$). So those are very essential to evaluate the structural seismic performance and seismic risk. The purpose of this paper is to develop seismic fragility curves for PSC box girder bridges. In order to construct numerical fragility curve of bridge structure using nonlinear time history analysis, a set of ground motions corresponding to design spectrum are artificially generated. Assuming a lognormal distribution, the fragility curve is estimated by using the methodology proposed by Shinozuka et al. PGA is simple and generally used parameter in fragility curve as ground motion intensity. However, the PGA has not good relationship with the inelastic structural behavior. So, $S_a$ and $S_d$ with more direct relationship for structural damage are used in fragility analysis as more useful intensity measures instead of PGA. The numerical fragility curves based on nonlinear time history analysis are compared with those obtained from simple method suggested in HAZUS program.

Effect of Multiple Circular Holes on Fatigue Crack Growth Path

  • Won, Young-Jun;Nishioka, Toshihisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.112-119
    • /
    • 2009
  • The mechanical fastening has some advantages in respect of the fastening strength and disassemble of the fastened parts. However, at the same time it has some dangerous factors, can cause fatigue crack initiation and propagation due to not only the static loading such as cargo and passengers but also the dynamic loading like vibrations which occur in the engines and the propellers. For this reason, the strength evaluation for the mechanical fastenings along with the sophisticated and detailed mechanical design and the safety evaluation should be executed, In this paper, we were carried out experiments to study fatigue crack growth paths in structures containing the multiple circular holes. It was investigated that how circular holes are affected on fatigue crack growth paths using the specimen consists of A5052-H112, which is widely used as the ship materials. It was found from the experimental results that the fatigue crack as if it is drawn to circular holes when crack tip approach to circular holes. However, it did not go into circular hole if there is the next circular hole. Therefore, the clarification of mechanism on the fatigue crack initiation and the propagation in structures containing the multiple circular holes can be expected in this study.

Optimal Design and Development of a Rice Mill Pilot Plant by Computer Simulation (II) -Development and Performance Evaluation of a Rice Mill Pilot Plant- (컴퓨터 시뮬레이션에 의한 미곡 도정공장의 적정설계 및 개발(II) -미곡 도정시스템의 개발 및 성능평가-)

  • 정종훈;김보곤;최영수
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.262-274
    • /
    • 1995
  • A rice mill pilot plant was designed and developed in the basis of the simulation results on the mill plants. The performance of the developed rice mill plant was evaluated, and the simulation model on the mill system was validated with the experimental data in the mill plant. The results of this study were as followings : 1. A rice mill pilot plant with the capacity of 0.5 t/h was designed and developed. 2. The hulled ratio of the mill plant was 87.3%, and the milled rice recovery and the head rice recovery of the cleaned rice were 74% and 87% , respectively. The degree of milling of the cleaned rice was 10.6% with a high polish. The intensity of the cleaned rice appeared high compared with that of the milled rice in the analysis of whiteness test using an image processing system. 3. The bottleneck, processing time, and production amount of the developed mill system almost coincided with those of the simulation of the rice mill plant. The developed simulation model of the rice mill plant was proven to be applicable to the design of a rice mill plant through experiments.

  • PDF

A framework for carrying out train safety evaluation and vibration analysis of a trussed-arch bridge subjected to vessel collision

  • Xia, Chaoyi;Zhang, Nan;Xia, He;Ma, Qin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.683-701
    • /
    • 2016
  • Safety is the prime concern for a high-speed railway bridge, especially when it is subjected to a collision. In this paper, an analysis framework for the dynamic responses of train-bridge systems under collision load is established. A multi-body dynamics model is employed to represent the moving vehicle, the modal decomposition method is adopted to describe the bridge structure, and the time history of a collision load is used as the external load on the train-bridge system. A (180+216+180) m continuous steel trussed-arch bridge is considered as an illustrative case study. With the vessel collision acting on the pier, the displacements and accelerations at the pier-top and the mid-span of the bridge are calculated when a CRH2 high-speed train running through the bridge, and the influence of bridge vibration on the running safety indices of the train, including derailment factors, offload factors and lateral wheel/rail forces, are analyzed. The results demonstrate that under the vessel collision load, the dynamic responses of the bridge are greatly enlarged, threatening the running safety of high-speed train on the bridge, which is affected by both the collision intensity and the train speed.

Seismic capacity evaluation of fire-damaged cabinet facility in a nuclear power plant

  • Nahar, Tahmina Tasnim;Rahman, Md Motiur;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1331-1344
    • /
    • 2021
  • This study is to evaluate the seismic capacity of the fire-damaged cabinet facility in a nuclear power plant (NPP). A prototype of an electrical cabinet is modeled using OpenSees for the numerical simulation. To capture the nonlinear behavior of the cabinet, the constitutive law of the material model under the fire environment is considered. The experimental record from the impact hammer test is extracted trough the frequency-domain decomposition (FDD) method, which is used to verify the effectiveness of the numerical model through modal assurance criteria (MAC). Assuming different temperatures, the nonlinear time history analysis is conducted using a set of fifty earthquakes and the seismic outputs are investigated by the fragility analysis. To get a threshold of intensity measure, the Monte Carlo Simulation (MCS) is adopted for uncertainty reduction purposes. Finally, a capacity estimation model has been proposed through the investigation, which will be helpful for the engineer or NPP operator to evaluate the fire-damaged cabinet strength under seismic excitation. This capacity model is presented in terms of the High Confidence of Low Probability of Failure (HCLPF) point. The results are validated by the proper judgment and can be used to analyze the influences of fire on the electrical cabinet.

The quality evaluation of SmBCO CC by non-contact R2R Hall sensor array system (R2R Hall Sensor 측정 장치를 이용한 비접촉식 성능평가)

  • Oh, Jae-Geun;Oh, Sang-Soo;Ha, Dong-Woo;Ha, Hong-Soo;Ko, Rock-Kil;Kim, Ho-Sub;Song, Kyu-Jeong;Lee, Nam-Jin;Moon, Seong-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.3
    • /
    • pp.1-4
    • /
    • 2008
  • For the effective evaluation of superconducting properties of a coated conductor, with a long length, a non destructive characterization technique including a reel-to-reel (R2R) Hall measuring system have been developed. A non-contact R2R Hall sensor array system was particularly designed to measure the superconducting property of coated conductors. The superconducting properties of long length coated conductors were measured by using this device. It was demonstrated that this system was convenient to measure the intensity and distribution of the magnet field applied perpendicular to the surfaces of the coated conductors. Using this device, the defect and low critical current density(Jc) area of coated conductors could be detected in real-time measurement.

Aging Analysis of Catenary Wires in Accordance with Temperature Changes for a Long Period of Time (장기간 온도변화에 따른 전차선로 전선류의 노후도 분석)

  • Cho, Nam-Hee;Oh, Wan-Shik;Kim, Jae-moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1590-1596
    • /
    • 2016
  • In this paper, catenary wires were analyzed aging through the experiment about a new product and a test sample in accordance with temperature changes from long-term use. In case of the contact wire, the maximum load was reduced within 7% and the tensile strength showed a reduced within 6.7% compared with a new reference standard $110mm^2$. 19 Strands of messenger wire have a little more than a standard value, but result data on tensile test were less than the reference value about stranded wire. Also parts among 49 strands of dropper was found to be smaller than the reference value and it appeared greatly increasing intensity as toward the center of the strand.

Lateral Load Distribution Factor for Modal Pushover Analysis (고차모드 영향이 반영된 Pushover 해석을 위한 횡하중 분배계수 제안)

  • Kim, Geon-Woo;Song, Jin-Gyu
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.236-243
    • /
    • 2005
  • Nonlinear static analysis is used to quantify the resistance of the structure to lateral deformation and to gauge the mode of deformation and intensity of local demands. A simple method for the nonlinear static analysis of complex building structures subjected to monotonically increasing horizontal loading(pushover analysis) is presented. The method is designed to be a part of new methodologies for the seismic design and evaluation of structures. A variety of existing pushover analysis procedures are currently being consolidated under programs such as ATC 40 and FEMA 273. And various techniques have been recommended, including the use of constant lateral force profiles and the use of adaptive and multimodal approaches. In this paper a modal pushover analysis using design response spectra of UBC 97 is proposed. Proposed method is compared against the method in FEMA 273 and ATC 40, and results of time history analysis.

  • PDF

A Study on Physical Service Environment and Customer's Satisfaction in Multiplex (멀티플렉스에서의 물리적 서비스환경과 고객의 만족에 관한 연구)

  • Chang Kyung;Ko Hyun-Min
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.29-36
    • /
    • 2004
  • As Lately movie industry and related market becomes larger and people have had more spare time, people's interest in multiplex grows higher, This paper studies relationships between physical service environment and customer's satisfaction in multiplex. The number of subjects in this study is 346 persons stayed at four multiplexes, among which we obtained valid responses from 326 persons through questionnaire investigation. We held hypotheses for the relationships, and for the testing, used methods are Spearman's correlation, Mann-Whitney test, etc, and for statistical analysis, SPSS 10.1 software was used. Thus, we found statistically significant results, that is, the relation between physical service environment and customer's satisfaction is positive: the higher evaluation about physical service environment is, the more customer's universal satisfaction is. Information about the significant relation's intensity of many indicators in physical service environment, which is given in this paper, can be used for attaining higher customer satisfaction and spreading more effective management activities in multiplex.