DOI QR코드

DOI QR Code

Seismic capacity evaluation of fire-damaged cabinet facility in a nuclear power plant

  • Nahar, Tahmina Tasnim (Department of Civil and Environmental Engineering, Kunsan National University) ;
  • Rahman, Md Motiur (Department of Civil and Environmental Engineering, Kunsan National University) ;
  • Kim, Dookie (Department of Civil and Environmental Engineering, Kongju National University)
  • Received : 2020.06.08
  • Accepted : 2020.09.04
  • Published : 2021.04.25

Abstract

This study is to evaluate the seismic capacity of the fire-damaged cabinet facility in a nuclear power plant (NPP). A prototype of an electrical cabinet is modeled using OpenSees for the numerical simulation. To capture the nonlinear behavior of the cabinet, the constitutive law of the material model under the fire environment is considered. The experimental record from the impact hammer test is extracted trough the frequency-domain decomposition (FDD) method, which is used to verify the effectiveness of the numerical model through modal assurance criteria (MAC). Assuming different temperatures, the nonlinear time history analysis is conducted using a set of fifty earthquakes and the seismic outputs are investigated by the fragility analysis. To get a threshold of intensity measure, the Monte Carlo Simulation (MCS) is adopted for uncertainty reduction purposes. Finally, a capacity estimation model has been proposed through the investigation, which will be helpful for the engineer or NPP operator to evaluate the fire-damaged cabinet strength under seismic excitation. This capacity model is presented in terms of the High Confidence of Low Probability of Failure (HCLPF) point. The results are validated by the proper judgment and can be used to analyze the influences of fire on the electrical cabinet.

Keywords

Acknowledgement

This work is supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20171510101960).

References

  1. M. Coutin, W. Plumecocq, P. Zavaleta, L. Audouin, Characterisation of opendoor electrical cabinet fires in compartments, Nucl. Eng. Des. 286 (2015) 104-115, https://doi.org/10.1016/j.nucengdes.2015.01.017.
  2. G. Valbuena, M. Modarres, Development of probabilistic models to estimate fire-induced cable damage at nuclear power plants, Nucl. Eng. Des. 239 (2009) 1113-1127, https://doi.org/10.1016/j.nucengdes.2009.01.003.
  3. S. Poghosyan, T. Malakyan, G. Kanetsyan, A. Amirjanyan, Complex investigation of fire PSA dominant scenario related to direct flame contact with safety related pipes, in: PSAM 12 - Probabilistic Saf. Assess. Manag. Conf., Hawaii, USA, 2014.
  4. T. Sakurahara, Z. Mohaghegh, S. Reihani, E. Kee, M. Brandyberry, S. Rodgers, An integrated methodology for spatio-temporal incorporation of underlying failure mechanisms into fire probabilistic risk assessment of nuclear power plants, Reliab. Eng. Syst. Saf. 169 (2018) 242-257, https://doi.org/10.1016/j.ress.2017.09.001.
  5. T. Sakurahara, Z. Mohaghegh, S. Reihani, E. Kee, Methodological and practical comparison of integrated probabilistic risk assessment (I-PRA) with the existing fire PRA of nuclear power plants, Nucl. Technol. 204 (2018) 354-377, https://doi.org/10.1080/00295450.2018.1486159.
  6. others R.P. Kassawara, J.S. Hyslop, EPRI/NRC-RES Fire PRA Methodology for Nuclear Power Facilities, Electr. Power Res. Inst. Palo Alto, 2005, https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6850/.
  7. K.K. Bandyopadhyay, C.H. Hofmayer, M.K. Kassir, S.E. Pepper, Seismic Fragility of Nuclear Power Plant Components: Phase 2, Motor Control Center, Switchboard, Panelboard and Power Supply, 1987. United States, http://inis.iaea.org/search/search.aspx?orig_q=RN:19073055.
  8. W. Werner, A. Angener, M. Rowekamp, J. Gauvain, The OECD fire databaseeconclusions from phase 2 and outlook, in: 20th Int. Conf. SMIRT, 11th Int. Post Conf. Semin. Fire Saf. Nucl. Power Plants Install., Helsinki, Finland, 2009.
  9. J.M. Chavez, An Experimental Investigation of Internally Ignited Fires in Nuclear Power Plant Control Cabinets: Part 1: Cabinet Effects Tests, 1987. https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr4527/.
  10. J. Mangs, O. Keski-Rahkonen, Full Scale Fire Experiments on Electronic Cabinets II, VTT Technical Research Centre of Finland, Espoo, Finland, 1996.
  11. X.D.Y. Wang, D. Li, Y. Otsuki, SMU: MATLAB Package for Structural Model Updating, 2019, version 1.1. https://github.com/ywang-structures/StructuralModel-Updating.
  12. S. Melis, L. Rigollet, J.M. Such, C. Casselman, Modelling of electrical cabinet fires based on the CARMELA experimental program, in: Eurosafe Forum, Berlin, Germany, 2004, https://doi.org/10.1193/1.1585969.
  13. C.E.N. Eurocode, Design of Steel Structures, Part 1-2: General RuleseStructural Fire Design (ENV 1993-1-2: 2001), European Committee for Standardization, 2001.
  14. R. V Whitman, E.H. Vanmarcke, R.L. de Neufville, J.E.I. Brennan, C.A. Cornell, J.M. Biggs, Seismic design decision analysis, J. Struct. Div. 101 (1975) 1067-1084. https://doi.org/10.1061/JSDEAG.0004049
  15. A.T. Council, C. Scawthorn, M. Khater, C. Rojahn, L.S. Cluff, Seismic Vulnerability and Impact of Disruption of Lifelines in the Conterminous United States, Applied Technology Council, 1991.
  16. S.A. King, A.S. Kiremidjian, N. Basoz, K. Law, M. Vucetic, M. Doroudian, R.A. Olson, J.M. Eidinger, K.A. Goettel, G. Horner, Methodologies for evaluating the socio-economic consequences of large earthquakes, Earthq. Spectra 13 (1997) 565-584, https://doi.org/10.1193/1.1585969.
  17. N.I. of B. Sciences, F.E.M. Agency, Multi-Hazard Loss Estimation Methodology Earthquake Model Hazus®-MH 2.1 Technical Manual, Federal Emergency Management Agency, Washington, DC, 2012.
  18. A.H.M.M. Billah, M.S. Alam, Seismic fragility assessment of highway bridges: a state-of-the-art review, Struct. Infrastruct. Eng. 11 (2015) 804-832, https://doi.org/10.1080/15732479.2014.912243.
  19. N.N. Pujari, T.K. Mandal, S. Ghosh, S. Lala, Optimisation of IDA-based fragility curves, in: Safety, Reliab. Risk Life-Cycle Perform. Struct. Infrastructures-Proc. 11 Th Int. Conf. Struct. Saf. Reliab., New York, USA, 2013, pp. 4435-4440.
  20. M. Shinozuka, M.Q. Feng, H. Kim, T. Uzawa, T. Ueda, M.C. for E.E. Research, Statistical Analysis of Fragility Curves, Multidisciplinary Center for Earthquake Engineering Research, 2003, https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224).
  21. S. Gunay, K.M. Mosalam, PEER performance-based earthquake engineering methodology, revisited, J. Earthq. Eng. 17 (2013) 829-858, https://doi.org/10.1080/13632469.2013.787377.
  22. M. Shinozuka, M.Q. Feng, J. Lee, T. Naganuma, Statistical analysis of fragility curves, J. Eng. Mech. 126 (2000) 1224-1231, https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224).
  23. C.B. Haselton, J.W. Baker, A.B. Liel, G.G. Deierlein, Accounting for groundmotion spectral shape characteristics in structural collapse assessment through an adjustment for epsilon, J. Struct. Eng. 137 (2011) 332-344, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000103.
  24. L. Eads, E. Miranda, D.G. Lignos, Average spectral acceleration as an intensity measure for collapse risk assessment, Earthq. Eng. Struct. Dynam. 44 (2015) 2057-2073, https://doi.org/10.1002/eqe.2575.
  25. A.K. Kazantzi, D. Vamvatsikos, Intensity measure selection for vulnerability studies of building classes, Earthq. Eng. Struct. Dynam. 44 (2015) 2677-2694, https://doi.org/10.1002/eqe.2603.
  26. T.-T. Tran, A.-T. Cao, T.-H.-X. Nguyen, D. Kim, Fragility assessment for electric cabinet in nuclear power plant using response surface methodology, Nucl. Eng. Technol. 51 (2019) 894-903, https://doi.org/10.1016/j.net.2018.12.025.
  27. K. Salman, T.-T. Tran, D. Kim, Seismic capacity evaluation of NPP electrical cabinet facility considering grouping effects, J. Nucl. Sci. Technol. (2020) 1-13, https://doi.org/10.1080/00223131.2020.1724206.
  28. J.W. Baker, Efficient analytical fragility function fitting using dynamic structural analysis, Earthq. Spectra 31 (2015) 579-599, https://doi.org/10.1193/021113EQS025M.
  29. C. Medel-Vera, T. Ji, Seismic risk control of nuclear power plants using seismic protection systems in stable continental regions: the UK case, Nucl. Eng. Des. 307 (2016) 377-391, https://doi.org/10.1016/j.nucengdes.2016.07.031.
  30. J.W. Reed, R.P. Kennedy, D.R. Buttemer, I.M. Idriss, D.P. Moore, T. Barr, K.D. Wooten, J.E. Smith, A Methodology for Assessment of Nuclear Power Plant Seismic Margin, Electric Power Research Inst., 1991, https://doi.org/10.1016/j.engstruct.2003.09.006.
  31. E. Choi, R. DesRoches, B. Nielson, Seismic fragility of typical bridges in moderate seismic zones, Eng. Struct. 26 (2004) 187-199, https://doi.org/10.1016/j.engstruct.2003.09.006.
  32. A. Elenas, Correlation between seismic acceleration parameters and overall structural damage indices of buildings, Soil Dynam. Earthq. Eng. 20 (2000) 93-100, https://doi.org/10.1016/S0267-7261(00)00041-5.
  33. P.P. Cordova, G.G. Deierlein, S.S.F. Mehanny, C.A. Cornell, The Second US-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, Pacific Earthquake Engineering Research Center, 2000.
  34. K. Salman, T.-T. Tran, D. Kim, Grouping effect on the seismic response of cabinet facility considering primary-secondary structure interaction, Nucl. Eng. Technol. (2019), https://doi.org/10.1016/j.net.2019.11.024.
  35. S.-H. Kim, M.Q. Feng, Fragility analysis of bridges under ground motion with spatial variation, Int. J. Non Lin. Mech. 38 (2003) 705-721, https://doi.org/10.1016/S0020-7462(01)00128-7.
  36. R.P. Kennedy, M.K. Ravindra, Seismic fragilities for nuclear power plant risk studies, Nucl. Eng. Des. 79 (1984) 47-68, https://doi.org/10.1016/0029-5493(84)90188-2.
  37. T.K. Mandal, S. Ghosh, N.N. Pujari, Seismic fragility analysis of a typical Indian PHWR containment: comparison of fragility models, Struct. Saf. 58 (2016) 11-19, https://doi.org/10.1016/j.strusafe.2015.08.003.
  38. D. Vamvatsikos, C.A. Cornell, Incremental dynamic analysis, Earthq. Eng. Struct. Dynam. 31 (2002) 491-514, https://doi.org/10.1002/eqe.141.
  39. L.F. Ibarra, H. Krawinkler, Global Collapse of Frame Structures under Seismic Excitations, Rep. no. TB 152, The John A. Blume Earthquake Engineering Center, 2005.
  40. P.G. Prassinos, M.K. Ravindra, J.B. Savy, Recommendations to the Nuclear Regulatory Commission on Trial Guidelines for Seismic Margin Reviews of Nuclear Power Plants Draft Report for Comment, 1986. United States, http://inis.iaea.org/search/search.aspx?orig_q=RN:17078576.
  41. A. Jahangir, K. Dookie, C. Byounghan, Seismic risk assessment of intake tower in Korea using updated fragility by Bayesian inference, Struct. Eng. Mech. 69 (2019) 317-326, https://doi.org/10.12989/SEM.2019.69.3.317.
  42. J. Li, B.F. Spencer Jr., A.S. Elnashai, Bayesian updating of fragility functions using hybrid simulation, J. Struct. Eng. 139 (2013) 1160-1171, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000685.
  43. E. Khojastehfar, S.B. Beheshti-Aval, M.R. Zolfaghari, K. Nasrollahzade, Collapse fragility curve development using Monte Carlo simulation and artificial neural network, Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 228 (2014) 301-312, https://doi.org/10.1177/1748006X13518524.
  44. A.-T. Cao, T.-T. Tran, T.-H.-X. Nguyen, D. Kim, Simplified approach for seismic risk assessment of cabinet facility in nuclear power plants based on cumulative absolute velocity, Nucl. Technol. 206 (2020) 743-757, https://doi.org/10.1080/00295450.2019.1696643.
  45. J. Nie, J. Braverman, C. Hofmayer, Y.S. Choun, M.K. Kim, I.K. Choi, Fragility Analysis Methodology for Degraded Structures and Passive Components in Nuclear Power Plants - Illustrated Using a Condensate Storage Tank, Korea, Republic of, 2010. https://www.osti.gov/etdeweb/servlets/purl/21487472.
  46. R. Brincker, L. Zhang, P. Andersen, Modal identification from ambient responses using frequency domain decomposition, in: Proc. 18th Int. Modal Anal. Conf., Texas, USA, 2000, pp. 625-630.
  47. B.S. Institution, Fire Classification of Construction Products and Building Elements: Part 1: Classification Using Test Data from Reaction to Fire Tests, British Standards Institution, 2002.
  48. N.E. Khorasani, M.E.M. Garlock, S.E. Quiel, Modeling steel structures in OpenSees: enhancements for fire and multi-hazard probabilistic analyses, Comput. Struct. 157 (2015) 218-231, https://doi.org/10.1016/j.compstruc.2015.05.025.
  49. U.S. Nrc, Fire Probabilistic Risk Assessment Methods Enhancements, 2010. NUREG/CR-6850 Suplement1,(EPRI 1019259).
  50. M. Pastor, M. Binda, T. Harcarik, Modal assurance criterion, Procedia Eng 48 (2012) 543-548, https://doi.org/10.1016/j.proeng.2012.09.551.
  51. X. Dong, Y. Wang, Formulation and Optimization Algorithm Comparison for the FE Model Updating of Large-Scale Models, 2018.
  52. U.S.N.R. Commission, A performance-based approach to define the site-specific earthquake ground motion, Regul. Guid. 1 (2007) 24.
  53. T.M. Heo, J.H. Kim, J.H. Lee, J.K. Kim, Response spectra of 2017 Pohang earthquake and comparison with Korean standard design spectra, J. Earthq. Eng. Soc. Korea. 22 (2018) 129-137. https://doi.org/10.5000/EESK.2018.22.3.129