Browse > Article
http://dx.doi.org/10.1016/j.net.2020.09.004

Seismic capacity evaluation of fire-damaged cabinet facility in a nuclear power plant  

Nahar, Tahmina Tasnim (Department of Civil and Environmental Engineering, Kunsan National University)
Rahman, Md Motiur (Department of Civil and Environmental Engineering, Kunsan National University)
Kim, Dookie (Department of Civil and Environmental Engineering, Kongju National University)
Publication Information
Nuclear Engineering and Technology / v.53, no.4, 2021 , pp. 1331-1344 More about this Journal
Abstract
This study is to evaluate the seismic capacity of the fire-damaged cabinet facility in a nuclear power plant (NPP). A prototype of an electrical cabinet is modeled using OpenSees for the numerical simulation. To capture the nonlinear behavior of the cabinet, the constitutive law of the material model under the fire environment is considered. The experimental record from the impact hammer test is extracted trough the frequency-domain decomposition (FDD) method, which is used to verify the effectiveness of the numerical model through modal assurance criteria (MAC). Assuming different temperatures, the nonlinear time history analysis is conducted using a set of fifty earthquakes and the seismic outputs are investigated by the fragility analysis. To get a threshold of intensity measure, the Monte Carlo Simulation (MCS) is adopted for uncertainty reduction purposes. Finally, a capacity estimation model has been proposed through the investigation, which will be helpful for the engineer or NPP operator to evaluate the fire-damaged cabinet strength under seismic excitation. This capacity model is presented in terms of the High Confidence of Low Probability of Failure (HCLPF) point. The results are validated by the proper judgment and can be used to analyze the influences of fire on the electrical cabinet.
Keywords
Seismic capacity evaluation; Fire-damaged FEM; Modal assurance criteria; Fragility analysis; HCLPF point; Cabinet amplification factor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Coutin, W. Plumecocq, P. Zavaleta, L. Audouin, Characterisation of opendoor electrical cabinet fires in compartments, Nucl. Eng. Des. 286 (2015) 104-115, https://doi.org/10.1016/j.nucengdes.2015.01.017.   DOI
2 G. Valbuena, M. Modarres, Development of probabilistic models to estimate fire-induced cable damage at nuclear power plants, Nucl. Eng. Des. 239 (2009) 1113-1127, https://doi.org/10.1016/j.nucengdes.2009.01.003.   DOI
3 T. Sakurahara, Z. Mohaghegh, S. Reihani, E. Kee, Methodological and practical comparison of integrated probabilistic risk assessment (I-PRA) with the existing fire PRA of nuclear power plants, Nucl. Technol. 204 (2018) 354-377, https://doi.org/10.1080/00295450.2018.1486159.   DOI
4 J. Mangs, O. Keski-Rahkonen, Full Scale Fire Experiments on Electronic Cabinets II, VTT Technical Research Centre of Finland, Espoo, Finland, 1996.
5 W. Werner, A. Angener, M. Rowekamp, J. Gauvain, The OECD fire databaseeconclusions from phase 2 and outlook, in: 20th Int. Conf. SMIRT, 11th Int. Post Conf. Semin. Fire Saf. Nucl. Power Plants Install., Helsinki, Finland, 2009.
6 S. Poghosyan, T. Malakyan, G. Kanetsyan, A. Amirjanyan, Complex investigation of fire PSA dominant scenario related to direct flame contact with safety related pipes, in: PSAM 12 - Probabilistic Saf. Assess. Manag. Conf., Hawaii, USA, 2014.
7 T. Sakurahara, Z. Mohaghegh, S. Reihani, E. Kee, M. Brandyberry, S. Rodgers, An integrated methodology for spatio-temporal incorporation of underlying failure mechanisms into fire probabilistic risk assessment of nuclear power plants, Reliab. Eng. Syst. Saf. 169 (2018) 242-257, https://doi.org/10.1016/j.ress.2017.09.001.   DOI
8 others R.P. Kassawara, J.S. Hyslop, EPRI/NRC-RES Fire PRA Methodology for Nuclear Power Facilities, Electr. Power Res. Inst. Palo Alto, 2005, https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6850/.
9 K.K. Bandyopadhyay, C.H. Hofmayer, M.K. Kassir, S.E. Pepper, Seismic Fragility of Nuclear Power Plant Components: Phase 2, Motor Control Center, Switchboard, Panelboard and Power Supply, 1987. United States, http://inis.iaea.org/search/search.aspx?orig_q=RN:19073055.
10 J.M. Chavez, An Experimental Investigation of Internally Ignited Fires in Nuclear Power Plant Control Cabinets: Part 1: Cabinet Effects Tests, 1987. https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr4527/.
11 C.E.N. Eurocode, Design of Steel Structures, Part 1-2: General RuleseStructural Fire Design (ENV 1993-1-2: 2001), European Committee for Standardization, 2001.
12 L. Eads, E. Miranda, D.G. Lignos, Average spectral acceleration as an intensity measure for collapse risk assessment, Earthq. Eng. Struct. Dynam. 44 (2015) 2057-2073, https://doi.org/10.1002/eqe.2575.   DOI
13 A.K. Kazantzi, D. Vamvatsikos, Intensity measure selection for vulnerability studies of building classes, Earthq. Eng. Struct. Dynam. 44 (2015) 2677-2694, https://doi.org/10.1002/eqe.2603.   DOI
14 K. Salman, T.-T. Tran, D. Kim, Seismic capacity evaluation of NPP electrical cabinet facility considering grouping effects, J. Nucl. Sci. Technol. (2020) 1-13, https://doi.org/10.1080/00223131.2020.1724206.   DOI
15 T.-T. Tran, A.-T. Cao, T.-H.-X. Nguyen, D. Kim, Fragility assessment for electric cabinet in nuclear power plant using response surface methodology, Nucl. Eng. Technol. 51 (2019) 894-903, https://doi.org/10.1016/j.net.2018.12.025.   DOI
16 N.I. of B. Sciences, F.E.M. Agency, Multi-Hazard Loss Estimation Methodology Earthquake Model Hazus®-MH 2.1 Technical Manual, Federal Emergency Management Agency, Washington, DC, 2012.
17 X.D.Y. Wang, D. Li, Y. Otsuki, SMU: MATLAB Package for Structural Model Updating, 2019, version 1.1. https://github.com/ywang-structures/StructuralModel-Updating.
18 S. Melis, L. Rigollet, J.M. Such, C. Casselman, Modelling of electrical cabinet fires based on the CARMELA experimental program, in: Eurosafe Forum, Berlin, Germany, 2004, https://doi.org/10.1193/1.1585969.   DOI
19 R. V Whitman, E.H. Vanmarcke, R.L. de Neufville, J.E.I. Brennan, C.A. Cornell, J.M. Biggs, Seismic design decision analysis, J. Struct. Div. 101 (1975) 1067-1084.   DOI
20 A.T. Council, C. Scawthorn, M. Khater, C. Rojahn, L.S. Cluff, Seismic Vulnerability and Impact of Disruption of Lifelines in the Conterminous United States, Applied Technology Council, 1991.
21 A. Elenas, Correlation between seismic acceleration parameters and overall structural damage indices of buildings, Soil Dynam. Earthq. Eng. 20 (2000) 93-100, https://doi.org/10.1016/S0267-7261(00)00041-5.   DOI
22 J.W. Baker, Efficient analytical fragility function fitting using dynamic structural analysis, Earthq. Spectra 31 (2015) 579-599, https://doi.org/10.1193/021113EQS025M.   DOI
23 C. Medel-Vera, T. Ji, Seismic risk control of nuclear power plants using seismic protection systems in stable continental regions: the UK case, Nucl. Eng. Des. 307 (2016) 377-391, https://doi.org/10.1016/j.nucengdes.2016.07.031.   DOI
24 J.W. Reed, R.P. Kennedy, D.R. Buttemer, I.M. Idriss, D.P. Moore, T. Barr, K.D. Wooten, J.E. Smith, A Methodology for Assessment of Nuclear Power Plant Seismic Margin, Electric Power Research Inst., 1991, https://doi.org/10.1016/j.engstruct.2003.09.006.   DOI
25 P.P. Cordova, G.G. Deierlein, S.S.F. Mehanny, C.A. Cornell, The Second US-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, Pacific Earthquake Engineering Research Center, 2000.
26 S.-H. Kim, M.Q. Feng, Fragility analysis of bridges under ground motion with spatial variation, Int. J. Non Lin. Mech. 38 (2003) 705-721, https://doi.org/10.1016/S0020-7462(01)00128-7.   DOI
27 R.P. Kennedy, M.K. Ravindra, Seismic fragilities for nuclear power plant risk studies, Nucl. Eng. Des. 79 (1984) 47-68, https://doi.org/10.1016/0029-5493(84)90188-2.   DOI
28 S. Gunay, K.M. Mosalam, PEER performance-based earthquake engineering methodology, revisited, J. Earthq. Eng. 17 (2013) 829-858, https://doi.org/10.1080/13632469.2013.787377.   DOI
29 A.H.M.M. Billah, M.S. Alam, Seismic fragility assessment of highway bridges: a state-of-the-art review, Struct. Infrastruct. Eng. 11 (2015) 804-832, https://doi.org/10.1080/15732479.2014.912243.   DOI
30 N.N. Pujari, T.K. Mandal, S. Ghosh, S. Lala, Optimisation of IDA-based fragility curves, in: Safety, Reliab. Risk Life-Cycle Perform. Struct. Infrastructures-Proc. 11 Th Int. Conf. Struct. Saf. Reliab., New York, USA, 2013, pp. 4435-4440.
31 N.E. Khorasani, M.E.M. Garlock, S.E. Quiel, Modeling steel structures in OpenSees: enhancements for fire and multi-hazard probabilistic analyses, Comput. Struct. 157 (2015) 218-231, https://doi.org/10.1016/j.compstruc.2015.05.025.   DOI
32 X. Dong, Y. Wang, Formulation and Optimization Algorithm Comparison for the FE Model Updating of Large-Scale Models, 2018.
33 U.S.N.R. Commission, A performance-based approach to define the site-specific earthquake ground motion, Regul. Guid. 1 (2007) 24.
34 T.M. Heo, J.H. Kim, J.H. Lee, J.K. Kim, Response spectra of 2017 Pohang earthquake and comparison with Korean standard design spectra, J. Earthq. Eng. Soc. Korea. 22 (2018) 129-137.   DOI
35 M. Shinozuka, M.Q. Feng, J. Lee, T. Naganuma, Statistical analysis of fragility curves, J. Eng. Mech. 126 (2000) 1224-1231, https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224).   DOI
36 K. Salman, T.-T. Tran, D. Kim, Grouping effect on the seismic response of cabinet facility considering primary-secondary structure interaction, Nucl. Eng. Technol. (2019), https://doi.org/10.1016/j.net.2019.11.024.   DOI
37 T.K. Mandal, S. Ghosh, N.N. Pujari, Seismic fragility analysis of a typical Indian PHWR containment: comparison of fragility models, Struct. Saf. 58 (2016) 11-19, https://doi.org/10.1016/j.strusafe.2015.08.003.   DOI
38 J. Nie, J. Braverman, C. Hofmayer, Y.S. Choun, M.K. Kim, I.K. Choi, Fragility Analysis Methodology for Degraded Structures and Passive Components in Nuclear Power Plants - Illustrated Using a Condensate Storage Tank, Korea, Republic of, 2010. https://www.osti.gov/etdeweb/servlets/purl/21487472.
39 D. Vamvatsikos, C.A. Cornell, Incremental dynamic analysis, Earthq. Eng. Struct. Dynam. 31 (2002) 491-514, https://doi.org/10.1002/eqe.141.   DOI
40 L.F. Ibarra, H. Krawinkler, Global Collapse of Frame Structures under Seismic Excitations, Rep. no. TB 152, The John A. Blume Earthquake Engineering Center, 2005.
41 M. Pastor, M. Binda, T. Harcarik, Modal assurance criterion, Procedia Eng 48 (2012) 543-548, https://doi.org/10.1016/j.proeng.2012.09.551.   DOI
42 P.G. Prassinos, M.K. Ravindra, J.B. Savy, Recommendations to the Nuclear Regulatory Commission on Trial Guidelines for Seismic Margin Reviews of Nuclear Power Plants Draft Report for Comment, 1986. United States, http://inis.iaea.org/search/search.aspx?orig_q=RN:17078576.
43 U.S. Nrc, Fire Probabilistic Risk Assessment Methods Enhancements, 2010. NUREG/CR-6850 Suplement1,(EPRI 1019259).
44 S.A. King, A.S. Kiremidjian, N. Basoz, K. Law, M. Vucetic, M. Doroudian, R.A. Olson, J.M. Eidinger, K.A. Goettel, G. Horner, Methodologies for evaluating the socio-economic consequences of large earthquakes, Earthq. Spectra 13 (1997) 565-584, https://doi.org/10.1193/1.1585969.   DOI
45 C.B. Haselton, J.W. Baker, A.B. Liel, G.G. Deierlein, Accounting for groundmotion spectral shape characteristics in structural collapse assessment through an adjustment for epsilon, J. Struct. Eng. 137 (2011) 332-344, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000103.   DOI
46 J. Li, B.F. Spencer Jr., A.S. Elnashai, Bayesian updating of fragility functions using hybrid simulation, J. Struct. Eng. 139 (2013) 1160-1171, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000685.   DOI
47 A. Jahangir, K. Dookie, C. Byounghan, Seismic risk assessment of intake tower in Korea using updated fragility by Bayesian inference, Struct. Eng. Mech. 69 (2019) 317-326, https://doi.org/10.12989/SEM.2019.69.3.317.   DOI
48 E. Khojastehfar, S.B. Beheshti-Aval, M.R. Zolfaghari, K. Nasrollahzade, Collapse fragility curve development using Monte Carlo simulation and artificial neural network, Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 228 (2014) 301-312, https://doi.org/10.1177/1748006X13518524.   DOI
49 R. Brincker, L. Zhang, P. Andersen, Modal identification from ambient responses using frequency domain decomposition, in: Proc. 18th Int. Modal Anal. Conf., Texas, USA, 2000, pp. 625-630.
50 B.S. Institution, Fire Classification of Construction Products and Building Elements: Part 1: Classification Using Test Data from Reaction to Fire Tests, British Standards Institution, 2002.
51 A.-T. Cao, T.-T. Tran, T.-H.-X. Nguyen, D. Kim, Simplified approach for seismic risk assessment of cabinet facility in nuclear power plants based on cumulative absolute velocity, Nucl. Technol. 206 (2020) 743-757, https://doi.org/10.1080/00295450.2019.1696643.   DOI
52 E. Choi, R. DesRoches, B. Nielson, Seismic fragility of typical bridges in moderate seismic zones, Eng. Struct. 26 (2004) 187-199, https://doi.org/10.1016/j.engstruct.2003.09.006.   DOI
53 M. Shinozuka, M.Q. Feng, H. Kim, T. Uzawa, T. Ueda, M.C. for E.E. Research, Statistical Analysis of Fragility Curves, Multidisciplinary Center for Earthquake Engineering Research, 2003, https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224).