• 제목/요약/키워드: time-domain simulations

검색결과 296건 처리시간 0.025초

Haar 웨이블릿 다중분해능 시간영역 해석법을 이용한 마이크로파 소자 해석 (Applications of Haar Wavelet Based Multiresolution Time-Domain Method to Microwave Structures)

  • 주세훈;김형훈;김형동
    • 한국전자파학회논문지
    • /
    • 제10권6호
    • /
    • pp.935-950
    • /
    • 1999
  • A multiresolution time-domain analysis scheme is derived for the analysis of microwave structures by using Haar wavelets to discretize the Maxwell's curl equation. This technique requires less computational effort than the conventional FDTD method because larger space grid can be used in the simulations. To validate this scheme, several 2-D·3-D microwave structures are simulated and the results are compared with those of the conventional FDTD scheme.

  • PDF

MIMO-OFDM 시스템에서 시간영역 훈련신호들의 직교화를 통한채널추정 방법 (A Channel Estimation Method by Orthogonalizing of the time domain training signals in MIMO-OFDM systems)

  • 전형구
    • 한국정보통신학회논문지
    • /
    • 제17권12호
    • /
    • pp.2818-2825
    • /
    • 2013
  • 본 논문에서는 MIMO-OFDM 시스템에서 시간영역 훈련신호의 직교화를 통한 채널추정 방법을 제안하였다. 본 논문에서는 Jeon[8]이 제안한 방법을 그대로 송신 안테나 개수가 4개인 MIMO-OFDM 시스템으로 확장하였을 때 수신기에서 다중경로 지연신호로 인하여 훈련신호가 직교되는 않는 문제점이 있음을 보였다. 이러한 문제점에 대한 해결책으로 훈련신호 중앙에 보호구간을 삽입하는 새로운 훈련신호 발생 방법을 제안하였다. 제안한 방법은 훈련신호들이 서로 직교하기 때문에 수신기에서 Walsh decoding sum기법을 통하여 시간영역에서 채널응답을 추정할 수 있음을 보였다.

Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling

  • Grinderslev, Christian;Lubek, Mikkel;Zhang, Zili
    • Wind and Structures
    • /
    • 제27권6호
    • /
    • pp.381-397
    • /
    • 2018
  • Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.

Nudging of Vertical Profiles of Meteorological Parameters in One-Dimensional Atmospheric Model: A Step Towards Improvements in Numerical Simulations

  • Subrahamanyam, D. Bala;Rani, S. Indira;Ramachandran, Radhika;Kunhikrishnan, P. K.
    • Ocean Science Journal
    • /
    • 제43권4호
    • /
    • pp.165-173
    • /
    • 2008
  • In this article, we describe a simple yet effective method for insertion of observational datasets in a mesoscale atmospheric model used in one-dimensional configuration through Nudging. To demonstrate the effectiveness of this technique, vertical profiles of meteorological parameters obtained from GLASS Sonde launches from a tiny island of Kaashidhoo in the Republic of Maldives are injected in a mesoscale atmospheric model - Advanced Regional Prediction System (ARPS), and model simulated parameters are compared with the available observational datasets. Analysis of one-time nudging in the model simulations over Kaashidhoo show that incorporation of this technique reasonably improves the model simulations within a time domain of +6 to +12 Hrs, while its impact on +18 Hrs simulations and beyond becomes literally null.

주파수 영역 기반 TR-UWB 수신기 (Frequency Domain based TR-UWB Receiver)

  • 우선걸;치호선;양훈기;김영수;육종관;강봉순
    • 한국통신학회논문지
    • /
    • 제32권4A호
    • /
    • pp.336-343
    • /
    • 2007
  • 본 논문은 UWB 신호의 초광대역 특성으로 인해서 시간영역에서 디지털적 구현이 어려운 TR-UWB 시스템을 주파수영역에서 구현할 수 있는 방법을 제시한다. 한 시스템은 Parseval 정리로부터 유도되었으며 그로 인해 시간영역에서 구현되는 TR-UWB 시스템과 동일한 성능을 갖는다. 또한 주파수 성분들의 복소수 특성을 이용해서 성능을 보다 개선할 수 있는 새로운 구조의 TR-UWB 시스템을 제시한다. 마지막으로 시뮬레이션에 의해서 시간영역에서 구현될 수 있는 TR-UWB 시스템과 주파수영역 시스템들 간의 성능을 비교한다.

승차감 개선을 위한 승용차 현가계 특성치의 파라메타 해석 (Parametric analysis of the properties of a passenger car for the improved ride quality)

  • 임성수;이장무;민현기;이재형
    • 오토저널
    • /
    • 제15권1호
    • /
    • pp.73-80
    • /
    • 1993
  • In this study, 3-dimensional linear and non-linear vehicle models are proposed to improve ride quality. The simulations of a vehicle passing over a bump were performed with those two vehicle models. The dynamic responses of the models were analyzed in time-domain and frequency-domain. Then, discomforts in each vibration axis and the combined-axes were evaluated based on the vibrations of the proposed models. The actual vehicle test results in time domain and frequency domain. Also, the discomfort values were compared. Then the validity of those two models were verified. Also, the design parameters of the suspension system are proposed for improving the ride quality.

  • PDF

Hybrid perfectly-matched-layers for transient simulation of scalar elastic waves

  • Pakravan, Alireza;Kang, Jun Won;Newtson, Craig M.;Kallivokas, Loukas F.
    • Structural Engineering and Mechanics
    • /
    • 제51권4호
    • /
    • pp.685-705
    • /
    • 2014
  • This paper presents a new formulation for forward scalar wave simulations in semi-infinite media. Perfectly-Matched-Layers (PMLs) are used as a wave absorbing boundary layer to surround a finite computational domain truncated from the semi-infinite domain. In this work, a hybrid formulation was developed for the simulation of scalar wave motion in two-dimensional PML-truncated domains. In this formulation, displacements and stresses are considered as unknowns in the PML domain, while only displacements are considered to be unknowns in the interior domain. This formulation reduces computational cost compared to fully-mixed formulations. To obtain governing wave equations in the PML region, complex coordinate stretching transformation was introduced to equilibrium, constitutive, and compatibility equations in the frequency domain. Then, equations were converted back to the time-domain using the inverse Fourier transform. The resulting equations are mixed (contain both displacements and stresses), and are coupled with the displacement-only equation in the regular domain. The Newmark method was used for the time integration of the semi-discrete equations.

주파수 영역 등화기를 사용하는 단일 반송파 전송 시스템을 위한 저 전력 전송 기법 (Low Power Transmission Technique for Single-Carrier Modulation with Frequency Domain Equalization)

  • 정혁구
    • 전기학회논문지P
    • /
    • 제66권4호
    • /
    • pp.247-251
    • /
    • 2017
  • This paper proposes a low power transmission technique for single-carrier modulation with frequency domain equalization. As time domain signals and frequency domain signals have unique corresponding functions, inserting zeros after each symbol causes a repetition in other domain, so maximal ratio combining technique using repetitive transmission can be applied in the frequency domain. In this paper, we configure transmit signals to insert zeros after each symbols for single-carrier modulation with frequency domain equalization and maximal ratio receive combining block in the receiver structures, propose a structure for transmitter and receiver and show that its performance is better than the traditional algorithm by simulations.

Localized evaluation of actuator tracking for real-time hybrid simulation using frequency-domain indices

  • Xu, Weijie;Guo, Tong;Chen, Cheng
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.631-642
    • /
    • 2017
  • Accurate actuator tracking plays an important role in real-time hybrid simulation (RTHS) to ensure accurate and reliable experimental results. Frequency-domain evaluation index (FEI) interprets actuator tracking into amplitude and phase errors thus providing a promising tool for quantitative assessment of real-time hybrid simulation results. Previous applications of FEI successfully evaluated actuator tracking over the entire duration of the tests. In this study, FEI with moving window technique is explored to provide post-experiment localized actuator tracking assessment. Both moving window with and without overlap are investigated through computational simulations. The challenge is discussed for Fourier Transform to satisfy both time domain and frequency resolution for selected length of moving window. The required data window length for accuracy is shown to depend on the natural frequency and structural nonlinearity as well as the ground motion input for both moving windows with and without overlap. Moving window without overlap shows better computational efficiency and has potential for future online evaluation. Moving window with overlap however requires much more computational efforts and is more suitable for post-experiment evaluation. Existing RTHS data from Network Earthquake Engineering Simulation (NEES) is utilized to further demonstrate the effectiveness of the proposed approaches. It is demonstrated that with proper window size, FEI with moving window techniques enable accurate localized evaluation of actuator tracking for real-time hybrid simulation.

3차원 FDTD 방법에 의한 ITO/Ag/ITO 다층 투명전극막의 투과도 시뮬레이션 (Simulations of Transmittance for the ITO/Ag/ITO Multiple Transparent Electrode Layers by 3 Dimensional FDTD Method)

  • 김기락;조의식;권상직
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.88-92
    • /
    • 2020
  • As a highly conductive and transparent electrode, the optical transmittances of ITO/Ag/ITO were simulated and compared with the experimental results. The simulations are based on the finite-difference time-domain (FDTD) method in solving linear Maxwell equations. In our simulations, the computation domain is set in the XZ-plane with 3D dimension, and a plane wave with variable wavelengths ranging from 250 nm to 850 nm is incident in the z-direction at normal incidence to the ITO/Ag/ITO film surrounded by free-air space. As the results through both simulations and experiments, it was shown that the thickness combinations by the ITO layers of about 40 nm and the Ag layer of about 10 nm could be most suitable conditions as a high conductive transparent electrode having the transmittance similar to that of a single ITO layer.