• Title/Summary/Keyword: time-domain simulations

Search Result 296, Processing Time 0.032 seconds

Applications of Haar Wavelet Based Multiresolution Time-Domain Method to Microwave Structures (Haar 웨이블릿 다중분해능 시간영역 해석법을 이용한 마이크로파 소자 해석)

  • 주세훈;김형훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.935-950
    • /
    • 1999
  • A multiresolution time-domain analysis scheme is derived for the analysis of microwave structures by using Haar wavelets to discretize the Maxwell's curl equation. This technique requires less computational effort than the conventional FDTD method because larger space grid can be used in the simulations. To validate this scheme, several 2-D·3-D microwave structures are simulated and the results are compared with those of the conventional FDTD scheme.

  • PDF

A Channel Estimation Method by Orthogonalizing of the time domain training signals in MIMO-OFDM systems (MIMO-OFDM 시스템에서 시간영역 훈련신호들의 직교화를 통한채널추정 방법)

  • Jeon, Hyoung-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2818-2825
    • /
    • 2013
  • In this paper, a channel estimation method by orthogonalizing of the time domain training signal in MIMO-OFDM systems is proposed. It has shown that Jeon's method[8] cannot be directly used in 4 Tx antenna MIMO-OFDM systems since the delayed Rx signals interfere the orthogonal property of the time domain training signals. As a possible solution to the problem, in this paper, a guard interval is inserted into the center of the training signals so that the orthogonal property between the Rx training signals can be maintained. It is shown by using computer simulations that the proposed method can estimate the channel response in time domain in 4 Tx antenna MIMO-OFDM systems.

Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling

  • Grinderslev, Christian;Lubek, Mikkel;Zhang, Zili
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.381-397
    • /
    • 2018
  • Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.

Nudging of Vertical Profiles of Meteorological Parameters in One-Dimensional Atmospheric Model: A Step Towards Improvements in Numerical Simulations

  • Subrahamanyam, D. Bala;Rani, S. Indira;Ramachandran, Radhika;Kunhikrishnan, P. K.
    • Ocean Science Journal
    • /
    • v.43 no.4
    • /
    • pp.165-173
    • /
    • 2008
  • In this article, we describe a simple yet effective method for insertion of observational datasets in a mesoscale atmospheric model used in one-dimensional configuration through Nudging. To demonstrate the effectiveness of this technique, vertical profiles of meteorological parameters obtained from GLASS Sonde launches from a tiny island of Kaashidhoo in the Republic of Maldives are injected in a mesoscale atmospheric model - Advanced Regional Prediction System (ARPS), and model simulated parameters are compared with the available observational datasets. Analysis of one-time nudging in the model simulations over Kaashidhoo show that incorporation of this technique reasonably improves the model simulations within a time domain of +6 to +12 Hrs, while its impact on +18 Hrs simulations and beyond becomes literally null.

Frequency Domain based TR-UWB Receiver (주파수 영역 기반 TR-UWB 수신기)

  • Woo, Seon-Keol;Choi, Ho-Seon;Yang, Hoon-Gee;Kim, Young-Soo;Yook, Jong-Gwan;Kang, Bong-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4A
    • /
    • pp.336-343
    • /
    • 2007
  • Due to the ultrawide band property of an UWB pulse, it is difficult to digitally implement a TR-UWB system in time domain. In order to overcome this problem, we propose two types of TR-UWB systems which can be implemented in frequency-domain. One of thorn is derived from the Parseval's theorem, which results in its system performance equitable to that of time-domain based system. In addition, we propose another receiver structure which can improve the performance by exploiting the complex nature of the frequency components. Finally, through simulations, we compare the performances of two receiver structures with the time domain counterpart.

Parametric analysis of the properties of a passenger car for the improved ride quality (승차감 개선을 위한 승용차 현가계 특성치의 파라메타 해석)

  • 임성수;이장무;민현기;이재형
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.73-80
    • /
    • 1993
  • In this study, 3-dimensional linear and non-linear vehicle models are proposed to improve ride quality. The simulations of a vehicle passing over a bump were performed with those two vehicle models. The dynamic responses of the models were analyzed in time-domain and frequency-domain. Then, discomforts in each vibration axis and the combined-axes were evaluated based on the vibrations of the proposed models. The actual vehicle test results in time domain and frequency domain. Also, the discomfort values were compared. Then the validity of those two models were verified. Also, the design parameters of the suspension system are proposed for improving the ride quality.

  • PDF

Hybrid perfectly-matched-layers for transient simulation of scalar elastic waves

  • Pakravan, Alireza;Kang, Jun Won;Newtson, Craig M.;Kallivokas, Loukas F.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.685-705
    • /
    • 2014
  • This paper presents a new formulation for forward scalar wave simulations in semi-infinite media. Perfectly-Matched-Layers (PMLs) are used as a wave absorbing boundary layer to surround a finite computational domain truncated from the semi-infinite domain. In this work, a hybrid formulation was developed for the simulation of scalar wave motion in two-dimensional PML-truncated domains. In this formulation, displacements and stresses are considered as unknowns in the PML domain, while only displacements are considered to be unknowns in the interior domain. This formulation reduces computational cost compared to fully-mixed formulations. To obtain governing wave equations in the PML region, complex coordinate stretching transformation was introduced to equilibrium, constitutive, and compatibility equations in the frequency domain. Then, equations were converted back to the time-domain using the inverse Fourier transform. The resulting equations are mixed (contain both displacements and stresses), and are coupled with the displacement-only equation in the regular domain. The Newmark method was used for the time integration of the semi-discrete equations.

Low Power Transmission Technique for Single-Carrier Modulation with Frequency Domain Equalization (주파수 영역 등화기를 사용하는 단일 반송파 전송 시스템을 위한 저 전력 전송 기법)

  • Jung, Hyeok Koo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.247-251
    • /
    • 2017
  • This paper proposes a low power transmission technique for single-carrier modulation with frequency domain equalization. As time domain signals and frequency domain signals have unique corresponding functions, inserting zeros after each symbol causes a repetition in other domain, so maximal ratio combining technique using repetitive transmission can be applied in the frequency domain. In this paper, we configure transmit signals to insert zeros after each symbols for single-carrier modulation with frequency domain equalization and maximal ratio receive combining block in the receiver structures, propose a structure for transmitter and receiver and show that its performance is better than the traditional algorithm by simulations.

Localized evaluation of actuator tracking for real-time hybrid simulation using frequency-domain indices

  • Xu, Weijie;Guo, Tong;Chen, Cheng
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.631-642
    • /
    • 2017
  • Accurate actuator tracking plays an important role in real-time hybrid simulation (RTHS) to ensure accurate and reliable experimental results. Frequency-domain evaluation index (FEI) interprets actuator tracking into amplitude and phase errors thus providing a promising tool for quantitative assessment of real-time hybrid simulation results. Previous applications of FEI successfully evaluated actuator tracking over the entire duration of the tests. In this study, FEI with moving window technique is explored to provide post-experiment localized actuator tracking assessment. Both moving window with and without overlap are investigated through computational simulations. The challenge is discussed for Fourier Transform to satisfy both time domain and frequency resolution for selected length of moving window. The required data window length for accuracy is shown to depend on the natural frequency and structural nonlinearity as well as the ground motion input for both moving windows with and without overlap. Moving window without overlap shows better computational efficiency and has potential for future online evaluation. Moving window with overlap however requires much more computational efforts and is more suitable for post-experiment evaluation. Existing RTHS data from Network Earthquake Engineering Simulation (NEES) is utilized to further demonstrate the effectiveness of the proposed approaches. It is demonstrated that with proper window size, FEI with moving window techniques enable accurate localized evaluation of actuator tracking for real-time hybrid simulation.

Simulations of Transmittance for the ITO/Ag/ITO Multiple Transparent Electrode Layers by 3 Dimensional FDTD Method (3차원 FDTD 방법에 의한 ITO/Ag/ITO 다층 투명전극막의 투과도 시뮬레이션)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.88-92
    • /
    • 2020
  • As a highly conductive and transparent electrode, the optical transmittances of ITO/Ag/ITO were simulated and compared with the experimental results. The simulations are based on the finite-difference time-domain (FDTD) method in solving linear Maxwell equations. In our simulations, the computation domain is set in the XZ-plane with 3D dimension, and a plane wave with variable wavelengths ranging from 250 nm to 850 nm is incident in the z-direction at normal incidence to the ITO/Ag/ITO film surrounded by free-air space. As the results through both simulations and experiments, it was shown that the thickness combinations by the ITO layers of about 40 nm and the Ag layer of about 10 nm could be most suitable conditions as a high conductive transparent electrode having the transmittance similar to that of a single ITO layer.