• Title/Summary/Keyword: time-dependent solution

Search Result 475, Processing Time 0.027 seconds

A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer

  • Ezzat, Magdy A.;El-Bary, Alaa A.
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.177-186
    • /
    • 2017
  • In this work, the model of magneto-thermoelasticity based on memory-dependent derivative (MDD) is applied to a one-dimensional thermal shock problem for a functionally graded half-space whose surface is assumed to be traction free and subjected to an arbitrary thermal loading. The $Lam{\acute{e}}^{\prime}s$ modulii are taken as functions of the vertical distance from the surface of thermoelastic perfect conducting medium in the presence of a uniform magnetic field. Laplace transform and the perturbation techniques are used to derive the solution in the Laplace transform domain. A numerical method is employed for the inversion of the Laplace transforms. The effects of the time-delay on the temperature, stress and displacement distribution for different linear forms of Kernel functions are discussed. Numerical results are represented graphically and discussed.

Time-dependent Reduction of Sliding Cohesion due to Rock Bridges along Discontinuities (암석 브리지에 의한 불연속면 점착강도의 시간의존성에 관한 연구)

  • 박철환;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2004
  • This paper is to introduce an article published in Rock Mechanics and Rock Engineering, 2003. In this research, a fracture mechanics model is developed to illustrate the importance of time-dependence far brittle fractured rock. In particular a model is developed fer the time-dependent degradation of rock joint cohesion. Degradation of joint cohesion is modeled as the time-dependent breaking of intact patches or rock bridges along the joint surface. A fracture mechanics model is developed utilizing subcritical crack growth, which results in a closed-form solution for joint cohesion as a function of time. As an example, a rock block containing rock bridges subjected to plane sliding is analyzed. The cohesion is found to continually decrease, at first slowly and then more rapidly. At a particular value of time the cohesion reduces to value that results in slope instability. A second example is given where variations in some of the material parameters are assumed. A probabilistic slope analysis is conducted, and the probability of failure as a function of time is predicted. The probability of failure is found to increase with time, from an initial value of 5% to a value at 100 years of over 40%. These examples show the importance of being able to predict the time-dependent behavior of a rock mass containing discontinuities, even for relatively short-term rock structures.

A Dynamic Lot-Sizing and Outbound Dispatching Problem with Delivery Time Windows and Heterogeneous Container Types (납품시간창과 다종의 컨테이너를 고려한 동적 로트크기결정 및 아웃바운드 디스패칭 문제)

  • Seo, Wonchul;Lee, Woon-Seek
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.4
    • /
    • pp.435-441
    • /
    • 2014
  • This paper considers a single-product problem for inbound lot-sizing and outbound dispatching at a third-party warehouse, where the demand is dynamic over the discrete time horizon. Each demand must be delivered into the corresponding delivery time window which is the time interval characterized by the earliest and latest delivery dates of the demand. Ordered products are shipped by heterogeneous container types. Each container type has type-dependent carrying capacity and the unit freight cost depends on each container type. Total freight cost is proportional to the number of each container type used. Also it is assumed that related cost functions are concave and backlogging is not allowed. The objective of the paper is to simultaneously determine the optimal inbound lot-sizing and outbound dispatching plans that minimize total costs which include ordering, shipping, and inventory holding costs. The optimal solution properties are characterized for the problem and then a dynamic programming algorithm is presented to find the optimal solution.

A time-dependent propagation of nonlinear magnetosonic waves in the interplanetary space with solar wind

  • Kim, Kyung-Im;Lee, Dong-Hun;Kim, Khan-Hyuk;Kim, Ki-Hong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.46.2-46.2
    • /
    • 2010
  • A magnetosonic wave is a longitudinal wave propagating perpendicularly to the magnetic fields and involves compression and rarefaction of the plasma. Lee and Kim (2000) investigated the theoretical solution for the evolution of nonlinear magnetosonic waves in the homogeneous space which adopt the approach of simple waves. We confirm the solution using a one-dimensional MHD code with Total Variation Diminishing (TVD) scheme. Then we apply the solution for the solar wind profiles. We examined the properties of nonlinear waves for the various initial perturbations at near the Lagrangian (L1) point. Also we describe waves steepening process while the shock is being formed by assuming different timescales for a driving source.

  • PDF

An Asymptotic Analysis on the Inviscid Plane Stagnation-flow Solidification Problem (비점성 평면 정체 유동 응고 문제에 대한 점근적 해석)

  • Yoo, Joo-Sik;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.792-801
    • /
    • 2000
  • The problem of phase change from liquid to solid in the inviscid plane-stagnation flow is theoretically investigated. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The transient solution is dependent on the three dimensionless parameters, but the equilibrium state is determined by one parameter of (temperature ratio/conductivity ratio). The effect of the fluid flow on the growth rate of the solid in the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state. The characteristics of the transient heat transfer at the surface of the solid and the liquid side of the solid-liquid interface for all the dimensionless parameters are elucidated.

DIFFUSION APPROXIMATION OF TIME DEPENDENT QUEUE SIZE DISTRIBUTION FOR $M^X$/$G^Y$/$_c$ SYSTEM$^1$

  • Choi, Bong-Dae;Shin, Yang-Woo
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.419-438
    • /
    • 1995
  • We investigate a tansient diffusion approximation of queue size distribution in $M^{X}/G^{Y}/c$ system using the diffusion process with elementary return boundary. We choose an appropriate diffusion process which approxiamtes the queue size in the system and derive the transient solution of Kolmogorov forward equation of the diffusion process. We derive an approximation formula for the transient queue size distribution and mean queue size, and then obtain the stationary solution from the transient solution. Accuracy evalution is presented by comparing approximation results for the mean queue size with the exact results or simulation results numerically.

  • PDF

A theoretical analysis on the inviscid stagnation-flow solidification problem (비점성 정체 유동 응고 문제에 대한 이론적 해석)

  • 유주식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • This study investigates the problem of phase change from liquid to solid in the inviscid stagnation flow. The solution of dimensionless governing equations is determined by the three dimensionless parameters of (temperature ratio/conductivity ratio), Stefan number, and diffusi-vity ratio. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The equilibrium state is dependent on (temperature ratio/conductivity ratio), but is independent of Stefan number and diffusivity ratio. The effect of fluid flow on the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state, and the characteristics of the solidification process for all the dimensionless parameters are elucidated.

  • PDF

Investigating the long-term behavior of creep and drying shrinkage of ambient-cured geopolymer concrete

  • Asad Ullah Qazi;Ali Murtaza Rasool;Iftikhar Ahmad;Muhammad Ali;Fawad S. Niazi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.335-347
    • /
    • 2024
  • This study pioneers the exploration of creep and shrinkage behavior in ambient-cured geopolymer concrete (GPC), a vital yet under-researched area in concrete technology. Focusing on the influence of sodium hydroxide (NaOH) solution concentration, the research utilizes low calcium fly ash (Class-F) and alkaline solutions to prepare two sets of GPC. The results show distinct patterns in compressive strength development and dry shrinkage reduction, with a 14 M NaOH solution demonstrating a 26.5% lower dry shrinkage than the 16 M solution. The creep behavior indicated a high initial strain within the first 7 days, significantly influenced by curing conditions and NaOH concentration. This study contributes to the existing knowledge by providing a deeper understanding of the time-dependent properties of GPC, which is crucial for optimizing its performance in structural applications.

Derivation of the First-Order Mass-Transfer Equation for a Diffusion-Dominated Zone of a 2-D Pore (2차원으로 구현한 다공성 매질의 확산주도영역에 관한 1차 물질이동 방정식의 유도)

  • Kim, Young-Woo;Seo, Byong-Min;Hwang, Seung-Min;Park, Cha-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.99-103
    • /
    • 2010
  • A new analytic solution was derived for the diffusion into or from an immobile zone of a rectangular 2-D pore. For a long time, the new solution converges to a traditional mobile-immobile zone (MIM) model, but only if the latter is used with an apparent initial concentration that is smaller by almost 20% than the true one. This is the tradeoff for using a simple MIM model instead of an exact model based on the diffusion equation. The mass-transfer coefficient was found to be constant for a sufficiently long time; it was proportional to the molecular diffusion and inversely proportional to the square of the pore depth. The mass-transfer coefficient was time-dependent for a sufficiently short time and may be significantly larger than its asymptotic value.

Mass Transport of Soluble Species Through Backfill into Surrounding Rock (용해도가 큰 핵종의 충전물질에서 주변 암반으로의 이동 현상)

  • Kang, Chul-Hyung;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.228-235
    • /
    • 1992
  • Some soluble species may not be solubility-limited or congruent-released with the matrix species. For example, during the operation of the nuclear reactor, the fission products can be accumulated in the fuel-cladding gap, voids, and grain boundaries of the fuel rods. In the waste package for spent-fuel placed in a geologic repository, the high solubility species of these fission products accumulated in the“gap”, e.g. cesium or iodine are expected to dissolve rapidly when ground water penetrates fuel rods. The time and space dependent mass transport for high solubility nuclides in the gap is analyzed, and its numerical illustrations are demonstrated. The approximate solution that is valid for all times is developed, and validated by comparison with an asymptotic solution and the solution obtained by the numerical inversion of Laplace transform covering the entire time span.

  • PDF