DOI QR코드

DOI QR Code

Derivation of the First-Order Mass-Transfer Equation for a Diffusion-Dominated Zone of a 2-D Pore

2차원으로 구현한 다공성 매질의 확산주도영역에 관한 1차 물질이동 방정식의 유도

  • Kim, Young-Woo (Department of Automotive Engineering, Hoseo University) ;
  • Seo, Byong-Min (Department of Environmental Engineering, Hoseo University) ;
  • Hwang, Seung-Min (Graduate School of Venture, Department of Health Environment, Hoseo University) ;
  • Park, Cha-Sik (Department of Automotive Engineering, Hoseo University)
  • 김영우 (호서대학교 자동차공학과) ;
  • 서병민 (호서대학교 환경공학과) ;
  • 황승민 (호서대학교 벤처전문대학원) ;
  • 박차식 (호서대학교 자동차공학과)
  • Published : 2010.02.01

Abstract

A new analytic solution was derived for the diffusion into or from an immobile zone of a rectangular 2-D pore. For a long time, the new solution converges to a traditional mobile-immobile zone (MIM) model, but only if the latter is used with an apparent initial concentration that is smaller by almost 20% than the true one. This is the tradeoff for using a simple MIM model instead of an exact model based on the diffusion equation. The mass-transfer coefficient was found to be constant for a sufficiently long time; it was proportional to the molecular diffusion and inversely proportional to the square of the pore depth. The mass-transfer coefficient was time-dependent for a sufficiently short time and may be significantly larger than its asymptotic value.

다공성 매질상에서 유체와 용질의 이동은 Mobile zone과 Immobile zone으로 분리해서 분석하는 Mobile-Immobile Zone Model을 이용하여 쉽게 현상을 구현할 수 있었으나 본 연구에서는 2차원 4각형태의 pore 상에서 확산주도영역(Immobile zone)으로 들어가고 나오는 용질의 확산에 관한 새로운 Analytic solution을 유도하여 기존 MIM Zone model과 비교 분석하였다. 새롭게 유도된 Analytic solution은 기존의 MIM model 과 비교했을때 충분히 오랜시간이 경과한 후에는 해의 일치를 보이지만 MIM model의 경우 초기 농도값이 주입된 실제 농도보다 약 20 % 낮게 나타난다. Mass-transfer 계수, $\alpha$는 일반적으로 시간의 흐름에 따라 감소하게 되는데 일정 시간이 경과하게 되면 안정화 되고 일정함을 유지하며 그 시간은 무차원으로 약 ${\tau}_0=0.15$이다. 또한 $\alpha$는 분자확산과 비례하며 Immobile 영역의 깊이와 반비례하는 반면 작은 시간이 경과한 후에는 시간에 종속되어진다.

Keywords

References

  1. Coats, K.H., and B.D. Smith, 1964, "Dead-End Pore Volume and Dispersion in Porous Media," Soc. Petrol. Eng. J., Vol. 4, pp. 73-84. https://doi.org/10.2118/647-PA
  2. van Genuchten, M.T., and P.J. Wierenga, 1976, "Mass Transfer Studies in Sorbing Porous Media .1. Analytical Solutions," Soil Sci. Soc Am. J., Vol. 40, pp. 473-480. https://doi.org/10.2136/sssaj1976.03615995004000040011x
  3. Nkedi-Kizza, P., J.W. Biggar, H.M. Selim, M.T. van Genuchten, P.J. Wierenga, J.M. Davidson, and D.R. Nielsen, 1984, "On the Equivalence of Two Conceptual Models for Describing Ion-Exchange During Transport Through and Aggregated Oxisol," Water Resour. Res., Vol. 20, No. 8, pp. 1123-1130. https://doi.org/10.1029/WR020i008p01123
  4. Sardin, M., D. Schweich, F.J. Leij, and M.T. van Genuchten, 1991, "Modeling the Nonequilibrium Transport of Linearly Interacting Solutes in Porous Media--A Review," Water Resour. Res., Vol. 27, No. 9, pp. 2287-2307. https://doi.org/10.1029/91WR01034
  5. Villeramaux, J., 1987, "Chemical Engineering Approach to Dynamic Modeling of Linear Chroma-Tography: A Flexible Method for Representing Complex Phenomena from Simple Concepts," J. Chromatogr. Vol. 406, pp. 11-26. https://doi.org/10.1016/S0021-9673(00)94014-7
  6. Villeramaux, J., 1990, "Dynamics of Linear Interactions in Heterogeneous Media: A Systems Approach," J. Pet. Sci. Eng., Vol. 4, No. 1, pp.21-30. https://doi.org/10.1016/0920-4105(90)90043-3
  7. Brusseau, M.L., R.E. Jessup, and P.S.C. Rao, 1989, "Modeling the Transport of Solutes Influenced by Multiprocess Nonequilibrium," Water Resour. Res., Vol. 25, No. 9, pp. 1971-1988. https://doi.org/10.1029/WR025i009p01971
  8. Valocchi, A.J., 1990, "Use of Temporal Moment Analysis to Study Reactive Solute Transport in Aggregated Porous Media," Geoderma, Vol. 46, No. 1-3, pp. 233-247. https://doi.org/10.1016/0016-7061(90)90017-4
  9. Haggerty, R., S.M. Gorelick, 1995, "Multiple- Rate Mass-Transfer for Modeling Diffusion and Surface-Reactions in Media with Pore-Scale Heterogeneity," Water Resour. Res., Vol. 31, No. 10, pp. 2383-2400. https://doi.org/10.1029/95WR10583
  10. Farrell, J., and M. Reinhard, 1994, "Desorption of Halogenated Organics from Model Solids, Sediments, and Soil Under Unsaturated Conditions .2. Kinetics," Env. Sci. Tech., Vol. 28, No. 1, pp. 63-72. https://doi.org/10.1021/es00050a010
  11. Werth, C.J., J.A. Cunningham, P.V. Roberts, and M. Reinhard, 1997, "Effects of Grain-Scale Mass Transfer on the Transport of Volatile Organics Through Sediments .2. Column results," Water Resour. Res., Vol. 33, No. 12, pp. 2727-2740. https://doi.org/10.1029/97WR02426
  12. Cunningham, J.A., C.J. Werth, M. Reinhard, and P.V. Roberts, 1997, "Effects of Grain-Scale Mass Transfer on the Transport of Volatile Organics Through Sediments .1. Model Development," Water Resour. Res., Vol. 33, No. 12, pp. 2713-2726. https://doi.org/10.1029/97WR02425
  13. Meigs, L.C., and R.L. Beauheim, 2001, "Tracer Tests in a Fractured Dolomite .1. Experimental Design and Observed Tracer Recoveries," Water Resour. Res., Vol. 37, No. 5, pp. 1113-1128. https://doi.org/10.1029/2000WR900335
  14. Haggerty, R., S.W. Fleming, L.C. Meigs, and M.C. McKenna, 2001, "Tracer Tests in a Fractured Dolomite .2. Analysis of Mass Transfer in Single-Well Injection-Withdrawal Tests," Water Resour. Res., Vol. 37, No. 5, pp. 1129-1142. https://doi.org/10.1029/2000WR900334
  15. Stehfest, H., 1970, "Numerical Inversion Of Laplace Transforms," Commun. ACM., Vol. 13, pp. 47-49. https://doi.org/10.1145/361953.361969

Cited by

  1. First-Order Mass Transfer in a Diffusion-Dominated (Immobile) Zone of an Axisymmetric Pore: Semi-Analytic Solution and Its Limitations vol.11, pp.11, 2010, https://doi.org/10.5762/KAIS.2010.11.11.4664