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DIFFUSION APPROXIMATION OF TIME DEPENDENT
QUEUE SIZE DISTRIBUTION FOR MX/GY/c SYSTEM!

BoNG DAE CHoI AND YANG WO0O SHIN

ABSTRACT. We investigate a transient diffusion approximation of queue
size distribution in M X /GY /c system using the diffusion process with
elementary return boundary. We choose an appropriate diffusion pro-
cess which approximates the queue size in the system and derive the
transient solution of Kolmogorov forward equation of the diffusion pro-
cess. We derive an approximation formula for the transient queue size
distribution and mean queue size, and then obtain the stationary solu-
tion from the transient solution. Accuracy evalunation is presented by
comparing approximation results for the mean queue size with the exact
results or simulation results numerically.

1. Introduction

We deal with a transient diffusion approximation for multiserver bulk
queue in which customers arrive in batches and are served in batches.
Examples of bulk queueing models are an inventory model with demands
of random size and replenishments of random quantity, a line of peo-
ple who arrive in groups of random size waiting for an elevator, and
the number of data units of random size which are generated at a re-
mote terminal waiting for transmission to a central computer system.
There are many analytical results for the bulk queueing model with ei-
ther batch-arrival and single-service or single-arrival and batch-service
(for the references see Chaudhry and Templeton [4]). Because of difficul-
ties of analysis and the impracticability of analytical results, approxima-
tion or numerical methods are proposed for the multiserver bulk queue.
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Baguchi and Templeton [2] proposed a numerical method for evaluating
the queue size distribution for M~ /MY /1/K queue where X and Y are
geometrically distributed. Baba [1] proposed a practical algorithm for
computing the steady state probabilities of queue size for MX /PH/c
system where the batch size X has a discerte phase type distribution.
Recently Chakravarthy and Alfa [3] proposed a matrix-geometric algo-
rithm for the computation of the steady state probability vectors and
some performance measures of the multiserver queue with Markovian
arrivals and batch services with thresholds. Zhao [23] gave an explicit
expression of the generating function of equilibrium probabilities of the
number of customers in the GI* /M/c system.

Diffusion approximations for single server bulk queue in steady-state
were given by Chiamsiri and Leonard [5],Fisher [15], Gaver [16] and Ge-
lenbe [17] etc. Kimura and Ohsone [21] gave a diffusion approximation
for steady-state queue size distribution in M~ /G/c system. Choi and
Shin [8] suggested a transient diffusion approximation for the queue size
distribution in GIX/G/1 system. Recently the transient diffusion ap-
proximation for queue size distribution in multiserver system M /G /e,
M/G/c/N and GI/G/c are also given by Choi and Shin [6, 7, 10]. The
diffusion approximation for queue size distribution is based on the heavy
traffic results that the suitably normalized queue size process can be ap-
proximated by Brownian motion process with reflecting boundary under
the heavy traffic condition (Igelhart and Whitt [19]). It is known that
a diffusion proces with elementary return boundary gives more accurate
approximation for light traffic conditions in which the system is more
frequently empty (Gelenbe [17]).

The analytical or algorithmic results for a transient distribution of
the queue size for the multiserver bulk queue with both batch arrival
and batch service are few.

The purpose of this paper is to provide a transient diffusion approx-
imation of queue size distribution in M~ /GY /¢ system using the diffu-
sion process with elementary return boundary. In section 2 we choose an
appropriate diffusion process which approximates the queue size in the
system and derive the transient solution of Kolmogorov forward equa-
tion of the diffusion process. In section 3 we derive the approximation
formula for the transient queue size distribution and mean queue size.
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In section 4 we obtain the steady-state solution from the transient solu-
tion by letting t — co. Accuracy evaluation is presented in section 5 by
comparing approximation results for the mean queue size with the exact
results or simulation results.

2. Formulation of diffusion process

For the MX /GY /¢ system we assume the following characteristics.
(1) Customers arrive in batches according to a time-homogeneous Poisson

process with rate A.

(ii) The batch size X of each arrival is positive integer valued random
variable with probability mass function z, = P(X = k), k =1,2,---,
and probability generating function X(z) = 3 50, 2x2*,|z| < 1. We
assume that 0 < ¥ = E(X) < o0 and 0 < 02 = E(X?) - #? < o0.

(iii) There are c identical servers acting in parallel and each server services
in batches. The mean and variance of service time are -‘1; and o2,
respectively. The batch size Y of each server is a positive integer
valued random variable with mean 0 < § < co and variance 0 < 0;‘: <
0.

(iv) The operation rules adopted here are as follows. When one of the
servers is free,

(a) if the number of customers in queue is greater than ¥, then the
first ¥ customers enter service immediately,

(b) if the number of customers in queue is less than or equal to ¥, then
all the waiting customers are taken up for service,

(c) if the number of customers in queue equals to 0, service starts as
soon as a new arrival occurs,

Let Q(t) be the total number of customers ia the M~ /GY /¢ system
at time ¢. To approximate the process {Q(#),t > 0}, we take a diffusion
process {X4(t),t > 0} with state space [0,00) and with elementary re-
turn boundary at the origin ( [5-10],[13], [17], [18], [20], [21] etc.). The
process {X,(t),t > 0} behaves as follows. When the trajectory of Xy(t)
reaches the boundary 2 = 0, it remains there for a random interval of
time called a holding time. After the sojourn at the boundary the tra-
Jectory jumps into the interior (0,00) and starts from scratch. In the
queueing theoretic context the holding time at z = 0 corresponds to
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the time interval during which the system is empty. Since arrival pro-
cess of customers is a compound Poisson, we assume the holding time
distribution of X4(t) is exponential with rate A. The diffusion process
{Xa(t),t > 0} is specified by two diffusion parameters called infinitesimal
variance a(z) and infinitesimal mean b(x2) defined by

Var(Xa(t + At) — Xq(t)| Xa(t) = z)

o) = fim, = |
b(z) = lim PR+ A8 = Xy(®)lXa(t) =)
At-0 At

Now we specify these parameters a(z) and b(z). Let A(t) and D(t) de-
note the total number of arriving customers and total number of depart-
ing customers in the time interval (0,1), respectively. Then the number
of customers in the system at time ¢ is given by

Q1) = Q0) + A(t) — D(¢).
Since {A(t),t > 0} is a compound Poisson process, we have for large t

(2.1a) E(A(t + At) — A(t)) = AFAt + o A1)

Var(A(t + At) — A(t)) = MZ* + o2 )At + o At)

2.1b
(2.10) = A#%(1 4+ CHAL + o( At),

2
where C? = Z% is the square of coefficient of variation of the random

variable X. Next we consider the departure process D(t). Let D;(t) de-
note the total number of customers served by server ¢, (1 = 1,2,--+ ,¢)in
the time interval (0,t). Then we have D(t) = Y_7_, D.(t). Let us assume
the process D;(t) is cumulative process (see Cox [11})(this assumption

seems to be appropriate under the heavy traffic condition p = —)‘f— =~ 1)

le
Na(t)

Di(t)= Y Yj,
j=1
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where Y; are independent and identically distributed random variables
with the same distribution as ¥ and Ny(#) is the number of batch depar-
tures from the server ¢. Then D;(#) is asymptotically normal with mean
pyt and variance (C7 + C2)uij?t as t goes to oo (eg. see Cox [11]), where

C? = u?0? and C': = %; are the squares of coefficients of variation of
service time and the random variable Y, respectively. If there are & cus-
tomers in the system, then we may assume that min(c, [-3]) servers are
busy, where [2] denotes the smallest integer not smaller than z. From
the discussion above, we have the asymptotic behavior of D(t) as follows

(2.2a) E(D(t + At) — D(1)|Q(t) = k) ~ min(e, [%] JguAt,

(2.2b) Var(D(t+At) - D()|Q(t) = ) ~ min(c, f%’] J(C2+C2)ug? At

From (2.1) and (2.2) we choose the parameters depending on the state
asfollowsfork— 1<z <k k=12

(2.3a)  a(e) = A2*(1+ C;) + min(c, [ -g?)(c.f + C )i’
(2.3b) b(z) = AZ — min(c, [g] Y.

When ¢ = 1, i.e. single server system, the expression (2.3) is consistent
with the parameters in Chiamsiri and Leonard [5] and if § = 1, then the
expression (2.3) is the same as the parameters in Kimura [21]. When
Y =1and X = 1, iie. M/G/c system, the expression (2.3) is the
same as the parameters in Kimura [20] and Choi and Shin [6]. Since
the jump size of diffusion process at z = 0 corresponds to the arrival
batch size X, we choose the jump distribution as z; = P{X = ¢}. Then
the probability density function f(z,t|zo) of Xa(t) given X4(0) = z¢
satisfies the following partial differential equation (Feller [14])

—_ =—-T(a(.1')f(x,tlato)) - %(b((l?)f(.’l?,tlmo))
(2.4) oo
+AP(t) Y 6(x ~i)zi, t >0, £ >0

1=1
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with the initial and boundary conditions

(2.5) f(z,0|xo) = 8(x — z0),
(2.6) f(0,t|xo) = 0,

where P(t) denotes the probability that the process X4(¢) is at origin at
time ¢ and é(-) is Dirac’s delta function. Furthermore, the probability
P(t) satisfies the following differential equation

dP(t)

(2.7) .

19
= —AP(t) + lim [’2’5’5(“") - bf]

and initial condition
(2.8) P(0) = 1(zo = 0),

where 1(E) denotes the indicator function of E. Since Xy(t) approxi-
mates the number of customers in the system at time t, we assume the
initial value X(0) = z¢ is nonnegative integer throughout this paper.
Now we derive the solution of the equation (2.4) under conditions (2.5)
- (2.8). The parameters a(z) and b(z) in (2.3) are piecewise constants
and have m discontinuous points, where m = min{k|(c — 1)y < k,k =
1,2,--+}. For the notational simplicity, let ar = a(k),br = b(k),k =
1,2,--- ,m and fi(z,t|zq) be the restriction of f(z,t|zg) toh—1<z <
k,t>0,k=1,2,--- ,m—1and fiu(z,]7e) the restriction of f(z,t|z¢) to
m—1<z <oo,t>0andlet gi(t|vo) = f(k,t|xe), k =0,1,2,--- ,m—1.
Then the equation (2.4) is reduced to the following m equations. For

k-l<z<kt>0,k=1,2,-- ., m-1

3fk 1 & fr O fx
9 e D
(2.9) ot agr "o
(2.10a) frlk — 1,t|.1,0 = gr-1(t|zo),
(2.10b) Fr(k, tlzo) = gr(t|zo),
(2.10¢) fr(x,0]z0) = é6(x — xp).

Form—-—1<az <oo,t >0,

Ofm 1 0*fm

dfm
(211) ""5;'- = §an,—0—;§— — bm a + /\P t) Z ’1‘ —7 T,,

i=m
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(2.12a) fm(m — 1, t|ze) = gm-1(t|a0),
(2.12b) fm(2,0lz0) = (2 — ).

The Laplace transform solution f*(z,s|zq) of f(x,t|z¢) of the equation
(2.4) is given as follows (for the similar derivation see appendix of Choi
and Shin [6]). For k- 1<z <k, k=1,2,--- ,m—1,

by i Az —-k+1
fr(z,s|zo) :exp(—k(x —k)) s1nhA;r(z b+ )gz.(s]:vo)
(2.13) ar sinh .4
- bi ] sinh Ag(k—2) ,
+ exp(ak(x ~k+1)) b A 9r-1(s|zo).

Form-1<z < oo,
(2.14)
fm(z,8]z0)

bm x
=exp((a— - A1n)(1' -m+ 1))9111—1('9'1?0)

. 6%g4z—zo)(e—An41—rof__6~An4x+ao—zwn—1n)1($0 > m)
amAm

AP*(S) bm i y / . N z ;
) (r~1) A |r—1i| —Ap(z+i—-2(m-1))
+ E Tieem (e —€ )
amAm ’

t=m

b .
=exp((=2 = An)(z = 1 + 1)) gy (s]0)

4t e%lf;(r—avo)(e—Amlr—xol _ G—Am(x+zo—2(m—1)))1(‘,1.0 > m)
amAm

AP*(s)

+ AmAm

(th(e_e;:v)

+ 2: mwmzﬂ)_6mﬁlmﬂm—ULYw—ﬂn”)’
m<i<r

2
where Ay = @,k =1,2,---,m, 0= %f',’- + A, n= %f— —4,, and
X(z3k) = 3 ;s @iz’
Let z1(s) = (A + s)P*(s) and zi(s) = ¢'_,(s]zo), i = 2,3,--- ,m.
Then the m-vector z(s) with components z;(s) satisfies the following
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linear system (detailed derivation is given in appendix A)
(2.15) T(s)z(s) = f(s),

where T'(s) is the m X m matrix of the form

( q1(s) ui(s) 0 0 0 0 \
q2(8)  wva(s) wua(s) O 0 0
g3(s)  wa(s) wa(s) wug(s) 0 0
I(s) = ' ;
Qm——‘l(s) 0 0 Wm-1(8) vm-1(s) um_'l(s)
\ gm(s) 0 e 0 0 wm(s) vm(s)

and the components of the matrix T'(s) and vector 7(s) are as follows:

1, if k=1
a(s)={ —5Tk-1, k=23, m-1
*ﬁ(l'm—l + _X’(E(m—l)e;yn)), if k= m,

up(s) = —Br,k=1,2,--- ,m—1,
vi(s) = Cr,k =2,3,-- ,m,

bi—
wi(s) = —By_1exp (2 it ), k=3,4,---,m,

)1
(s) {l(mo_—:k——l), fhk=1,2,--- ,m-1
ri(s) = . \ :
e o= mtD (2 >y — 1), if k=m,
where
arAdp 1
By = ek sl“=1a2a"'a ,
FETETC U snh A "
Cy = by - b1 4 ar-1Ap-1 1 ak‘Ak 1 ’
2 2 tanh Az _; 2  tanh A
h=23,---,m-1,
Cm - bm - bm-—-l + am—lAm—l 1 CmAm

2 2 tanh A,p 1 2



Diffusion approximation for M~X /G* /¢ queue 427

3. Diffusion approximation of time dependent queue size
distribution for M~ /GY /c system

Now we derive approximation formulas of probability function p(k,
tlzo) = P(Q(t) = k|Q(0) = x¢) and mean L(t|ro) = E(Q(t)|Q(0) = zy).
Let p(k,t|zo), (k = 0,1,2,---) be an approximation of p(k,t|zo), (k =
0,1,2,.--). From the definition of the elementary return boundary, it
seems to be appropriate to use

(3.1) P(0,t|ag) = P(2).

To obtain an approximation p(k, t|zg), (k= 1,2, --), we must discretize
the probability density function f(«,t[xo). Although there are many
discretization methods (e.g. see Gelenbe, Pusolle and Nelson [18]), we
adopt the following, because of its computational simplicity and high
accuracy

(3.2) P(k,t|lzo) = D(t)f(k,t|zo), k= 1,2,

where D(t) is the normalizing constant so as to be > -, p1(k,t|ae) = 1,
that is,
_ 1 - P(t)

Yooy f(k tleo)
We have from (2.13) and (2.14) the Laplace transform f*(k,s|xo) of
f(k,tlzo) as follows

D(t)

(3.3a) fr(k,slzo) = gi(s|vo), k=1,2,- - ,m -1,
(3.3b)
Fr(k,slzo) = e *mHDgr  (s]a)
+ " il e v (k=0) (e—A’"“"_”I — e_A"‘(kJ”“‘z(m_])))l (xg = m)
k-1
AP* 0 <~ o
. /55) (eka}i(e—a; ]{) + Z J.ie(k—l)n

- ek”+2‘4"'("‘“1)X(cc_e;m)), k>m.
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To obtain the numerical results of p(k,¢|zg), it is necessary to reduce
the infinite sum 377 f(k,t|zo) to the computable form. Let Do(t) =
Y ore1 f(k,t|lzo). We have from (3.3) that the Laplace transform D§(s)
Of Do(t)

Dg(s) = Z Fr(k, slzo)
k=1

m—1
B4 = =3 siloleo) + = oh o (slen)
1 1 — ¢=2Am=b(zg—m) 1 — e=8(zo—m)
+ ( - )1 >m
amAm ] ~en 1—¢f (zo 2 m)
AP*(5) (Zm — e 2 Ame™ X (7% m)  @m — ™ X(e7% m)
* ( | - b 8 )
amAm 1 — e 1— e

Now we derive approximation fl(t|ro) of mean number L(t|zy) of cus-
tomers in the system by using the formula

(3.5) L(tlzo) = Y kp(k.tlxe) = D(t)Lo(t|zy),

where Lo(t|zg) = Zfozl kf(k, t|xg).
The Laplace transform L§(s|zo) of Lo(t|xo) is given as follows

m-—1
) . ' el(m — (m — 1)e”
Li(slzo) = > kgi(slzo) + gh—1(slz0) = Jet)
k=1 (1 —-e")-
1 1 1y, —0lzg—m) é
— (5 gz [(m = (m = 10eNe=1207) (20— (20 ~ 1)e?)]
mam - -
z2o(1 —e?) + ¥ —Ht.ro—m)—zAmm-(m—1)"’" _
a-enz  ° ey ) ez
AP* 1 v -8
(3 6) + . A(s) ((1 ) [(m - {(m — l)eg)eme,‘(e 9. in)
* ‘m <Im - € -
m-—-1
(1-e)z -~ Z kzp)—ce a,m]
m-—1

e

l—e’i Zklk (I —emn)? =iy

1 n
—_ e"zAm —H%_Enlo-y(e_a; m)) .
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4, Diffusion approximation of steady-state queue size distri-
bution for MX/GY /c system

In this section we derive a diffusion approximation of steady-state
queue size distribution. For this we first derive the stationary probability
density function of the diffusion process {X(¢),# > 0} from the transient
density function by using the final value theorem for Laplace transform:
limy—oo f(t) = lime—o sf*(s). Let f(z) = lim¢—oo f(2,t|z0) and P =
lim¢—.o, P(t). Under the condition b, < 0, that is, p = -C-Afg < 1, the
stationary density function is given as follows (the derivation is given
in the Appendix). For the notational simplicity, let £, = P(X > k) =
E]_.kz'] and v = bk' (k=1,2,---,m), and
i if b #0

B;(0) = lim Bi(s) =4 <*~1
(0) lim B; o if b =0,

B;(0) T £

=41

o
L k

qkzz —J exp(z75),k:1,2,---,m—1.
J=1

When b, 40,k =1,2,--- ,m, we havefor k-1 <z <k
(4.1)
Plen(E=R (g + 3 )—-f—f), fk=1,2---,m-1

f(.’L‘ (6-7,"(1 m+l) Qm 1_{__ Tm

—ﬁ(i‘k—{-zk Tl oermlr=i)y )), fk=mm+1,---,

=m

—e Ty Iy dm—1
P.—lil+/\;( Yk (qk+b bk) A Ym
(4.2) - .
)\ m-—1 -1
— 7)——(:i — Z krg —(m - l)am)}
m k=]
and when b; =0 forsomei=1,2,--- m—1,fori - 1<z <1,

(43) f(2) = AP(gi + —Zi(z — i)
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m-1
[1+/\Z (fu+——)~—)+1\(qz——)
(4.4) (=t
m-—1
- ,\q%n_—-l- — Z kzy —(m - 1)xm)] !

We have from (3.1), (3.2), (4.1) and (4.2) that the steady-state prob-
ability p(k) = lim;—oc p(k, t|x0)
(4.5)
P, ifk=0
Gyx, fk=1,2---,m—-1
PR) = 0 G (et gy + Jm)

7n

_7,'}‘"‘(51\- + Zf;:l ;r;e“f”'(k"i))), if k >m,

where
1-P
(4.6) m—2 . 1 . }
m-1
x(;‘]k‘*’m bm Q*Zku-} m"l)?m)) .

The stationary mean queue size L = lim—oc il(t]zo) is given by

m-—1
G evm
L G kZ: k(]k + [m - (m - 1)67"’ )bmqm_l
=1
(47) eYm m-1 m—1

(i"(rn_l)jm*’zl\-fﬂk)_- (C +1+ )+Zk~l‘k]-

1 —erYm

5. Numerical Results

In this section we investigate the accuracy of approximation by numer-
ically comparing the diffusion approximation results with the simulation
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results or analytic results for the mean queue size. We use three ser-
vice time distributions with mean 1 which are exponential (denoted by
M), hyperexponential of order 2 (denoted by H,) and 2 stage Erlang
(denoted by E; ). As the batch size distribution we use the geometric
distribution with mean 2 (denoted by G(2)), deterministic distribution
with mean k (denoted by D(k)), ¥ = 1,2 and uniform distribution on
{1,2,3}. In table 1, we compare the approximation results with the an-
alytic results for stationary mean queue size in M~ /G/c system for the
traffic intensities p = 0.3,0.5,0.7,0.9. In table 1, the relative percentage
error Err(%) denotes the
Err(%) = _Exact - Diff. x 100.
Exact

We cite the tables in Kimura [20,21] for the analytic results. Table 2
represents the comparisons of diffusion approximation results with the
simulation results for the mean queue size in M%) /GU(?) /10 system for
moderate traffic intensity p = 0.5. In table 2 "sim.” and "c.i.” denote
the simulation results and 95 % confidence interval, respectively. The
numerical inversion of Laplace transform L*(s|ag) is obtained by using
the algorithm 368 in ACM [22]. Table 1 and table 2 show that our
approximation gives a good numerical results.

Table 1. Mean Queue Size for Stationary M~ /G/10 System

X G(2) D(2) D(1)

G | p | Exact L (Err(%)) || Exact L (Err(%)) || Exact L (Err(%))
0.3 ] 3.043 3.020 (0.756) || 3.006 | 3.013 (-0.233) {| 3.000 3.002 (0.067)
M 0.5 5.355 5.211 (2.689) 5.138 5.107 (0.603) 5.036 5.032 (0.079)
0.7 | 8.956 | 8.627 (3.674) || 8.129 8.026 (1.267) || 7.517 7.510 (0.093)
0.9 |23.021 | 22.489 (2.311) ||18.875 | 18.680 (1.033) ||15.018 | 14.999 (0.127)
0.3} 3.038 | 3.223 (-6.090) || 3.006 | 3.228 (-7.385) || 3.001 [ 3.239 (-7.931)
Hy 10.5 | 5.343 | 5.534 (-3.575) 5.141 | 5.419 (-5.408) {| 5.043 | 5.329 (-5.671)
0.7 | 9.027 | 9.271 (-2.703) 8.241 | 8.639 (-4.830) || 7.637 | 8.070 (-5.670)
0.9 | 24.40 |24.802 (-1.648) || 20.35 [20.950 (-2.948) || 16.50 |17.196 (-4.218)
0.3 ] 3.054 2.822 (7.597) || 3.008 | 2.800 (6.915) {| 3.000 2.765 (7.833)
E, j0.5 ] 5.381 4.904 (8.865) || 5.137 | 4.813 (6.307) || 5.029 | 4.757 (5.409)
0.7 | 8.889 | 8.002 (9.979) || 8.019 | 7.443 (7.138) || 7.407 | 7.002 (5.468)
0.9 ] 21.60 | 20.195 (6.505) 17.40 { 16.442 (5.506) ||13.576 | 12.863 (5.252)




432 Bong Dae Choi and Yang Woo Shin

Table 2. Mean Queue Size for M2 /GV(? /10 System (p = 0.5,z0 = 0)

M E, Hy
Time Sim (c.i.) L(t) Sim (c.1.) L(t) Sim (c.1.) L(t)
.10 976 (.034) 956 .966 (.034) .948 1.018 (.035) 964

30 | 2,614 (.053) | 2.610 | 2.563 (.053) | 2.559 | 2.895 (.058) | 2.660
50 | 3.994 (.065) | 3.966 | 3.856 (.064) | 3.861 | 4.549 (.072) | 4.068
70 | 5.035(.072) | 5.079 | 4.809 (.070) |4.922 | 5.816 (.080) | 5.233
1.00 | 6.319 (.080) | 6.401 | 5598 (.078) |6.171 | 7.288 (.089) | 6.626
3.00 | 9.872(.104) | 9.724 | 9.258 (.098) | 9.243 | 10.318 (.107) | 10.212
5.00 |10.579 (.112) | 10.242 | 10.250 (.109) | 9.684 | 10.623 (.111) | 10.823
7.00 |10.631 (.113) | 10.316 | 10.516 (.110) | 9.735 | 10.614 (.111) | 10.921
10.00 | 10.720 (.113) | 10.345 | 10.716 (.114) | 9.757 | 10.703 (.112) | 10.971
15.00 | 10.786 (.115) | 10.335 | 10.820 (.117) | 9.739 | 10.723 (.114) | 10.975
20.00 | 10.704 (.114) | 10.335 | 10.752 (.116) | 9.749 | 10.688 (.113) | 10.972
30.00 | 10.648 (.115) | 10.343 | 10.650 (.115) | 9.748 | 10.609 (.113) | 10.970

Appendix 1. Derivation of (2.15)
Taking the Laplace transform with respective to t-variable of the equa-
tion (2.7), we have the following relations

(Al) [Cr,sfl*]rlu = (/\ + S)P*(S) - 1(1170 = U)
where w
Cesf” = N alz)f*(x.t|zo)} — blz)f*(a, s|zo).

To determine gj(s|xo)’s and P*(s) in terms of known parameters, we
take the Laplace transform of equation (2.4) with respect to t-variable,
and then integrate with respect to x variable. Then we have

Cz,sf‘= ':‘[C:v.sfl*]-rl.ﬂ + 3/ f*(y,sll'o)dy - (x> z0)
Q

— AP*(5) Z Uz > i)

1<i<r

(A.2)

After simple calculation we have from (A.2) that
(A.3) (Crof3)zi = [Crsfilers = AP*(8)x; — 1(z9 = 1),

(A'4) [Cr,sfg]zlk-—l = [Cz-,sf;—lla'Tk—l - /\P*(s)‘r—k—l
~Nao=k—-1),k=3,4,- - ,m.
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Calculating C; ,ff from (2.13) and then substituting it into (A.1l), we
have

(A.5) (A + s)P*(s) — B1g;(s|xo) = 1{zo = 0).

Similarly we obtain by calculating C; . ff from (2.13) and substituting
it into (A.3),

(AG) —)\a;lP'(s) -+ C2gI(S|.7:0‘) — Bzg;(éll‘o) =1l(xg = 1).

Doing the same thing for (A.3) and (A.4), from (2.13) and (2.14) yields
the followings

(A7)

— AP*(s)zp_1 — Bi_re ™1 g2 _y(s|z0) + Chgi-y(slzo) — Brgi(slzo)
=l(zo=k-1), k=3,4,--- ,m—1,

- /\P*(s)(zm_l + eftm=1) i l_ie—z’a)

t=m

Hbm—1

Ly *
(A8) - g:"‘—Z(S'wO )Bm‘le fmett gm—](SIIO)Cm
=e—9(zo—m+l)1($0 >m— 1)

Summarizing the (A.5) - (A.8), we have the linear system (2.15).

2. Derivation of (4.1) and (4.2).
For the notational simplicity, let v = y’-_"s,k = 1,2,-.-,m. Simple
calculation yields
|0 ]

(A.9) limdy=—,4%k=1,2,-- ,m,
s—0 aj

b .
f by #0
(A.10) lim By = { evk =1 1 s c=1,2,-+- ,m-—1,
8= & if by =0
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B _1(0) + ™ By(0), ifk=2,3,---,m—1

All)  lmC =
(A1D) - lim {Bm_l(O) i k=

Multiplying both sides of (A.5) by s and letting s — 0, we have

1 .
(e —1)AP if b #0
(A.12) ==L _ W : L
B,(0) ZAP if by = 0.
Similarly from (A.6), we have
(A.13) —Az1 P+ Cy(0)g, — B3(0)g2 = 0.

From (A.11) - (A.13) we have the relation for g, as

1—.2‘1

= AP 4+ e
g2 B:(0) +e” g
(A.14) l— 2 o2
= /\P( . )
B>(0)  By(0)
Doing the same thing for (A.7) we have the following
(A.15)
1
gk = Be(0) ~Zk-1AP — Br_1(0)e™ gy + C'k(l))gk—l)
= ! (_-Tk—l/\P - Bk~1(0)(gk—1 - C“"’gkvz)) +eMgro
B (0) ‘ '

Now we derive the concrete form from the recursive formula (A.15). For
k = 3, we have from (A.14) and (A.15)

1
9= B.00) (~22AP + Ba(0)(g2 — e™g; ) + e,
1
= BB(O)(*I?/\P +(1—a1)AP) + €™ g,
1

i

Bg(O)(l — 21 —a2)AP 4 eMg,.
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Thus we have inductively

1

A. —e*g_1 = ———(1
(A16) gr—eTgr_1 Bk(O)(

k=1
— Z:I:,-))\P, k=1,2,--- ., m~—1,
=1

Hence from (A.15) and (A.16) we have

AP

(A.17) 9% = B (0)

Ir+etgr_1,k=1,2,--- ,m—1,

where T = 1— E 1 z; = P(X > k). From the recursive relation (A.17)
and (A.12) we have

koo k
- Lj . N k=12 - . —
(A.18) gk = /\P; B,(0) exl)(i;l vi), k=1,2,--- ,m—1.

Now we calculate limy—¢ sf} (2, slay) = fu(z),k = 1,2,--- ,m. Routine
calculation for lim,_g sff(z,s|ee) = fi(a) yields the following for & =
1,2,--- ,m -1,

“Ek e‘Yk(I_k) — 1

(z) = i (z—k) . AP
fi(z)=¢ gk + B0 o 1
(A.19) AP (((Ik + F)em(x=h 3&) if bi # 0
/\P((jk + a%l—?k(;t — k)) if b, =0,

where gy = ¥,k =1,2,--- ,m — 1, and
(A.20)
fm(x) = e‘ym(l_m+1)gm—l

AP _ -t
- Z——(a’:m — Fetm(ETmED Z e ').Ti)
m m<i<r

—_—m . T . r—i
ZAP(e'Ym(I +1)(qm_1 + _"_') s — TM + Z e (x—i )
bm , m<i<z
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Now we calculate the lim;—., P(t) = P from the relation

(A.21) P +/ flx)dz = 1.
0
Simple calculation yields the followings. For k =1,2,--+ ,m — 1,
¢ pEylme™ x5 g
(A_")‘)) / f(-l)d:l, = { AP ((QL +_ bi ) Yk bk) if bk 75 0
o /\P(QI; o ﬁ if b =0

and

/ flz)de = — AP—(qm-1 + —1—’1)
m—1 Tm bm

AP & ( 1 2 . .
— T+ — T e‘Ym(J*z) - e“/m(J—z—l) )
bm ];m ! Tm 1;1 1( )

Note that

o0
Z Ii(cvmu—") . e'rm(J—t—l)’)

__(6"/m § E 16‘7771(] i—-1) __ = —Zm,

J=mi=m
(=] m—1
Z Zr=r—-—m+1-— Z(] —m+ l)xj.
k=m 1=1

Hence we have

m~—1
" - 1 B P
dm-1 ———(:i—m+1—}_J(J—m-i-l):vj)).
TYm m =1
When b; # 0,k = 1,2,--- ,m — 1, we have from (A.22), (A.23) and
(A.21) that

a.23) [ fla)de = — /\P(

m—1

1 /\m 1 T l—e™ Tk

[ + Z ((gx + “‘) w E:)

(A.24) m=

- /\(qm“1 + L('i' -m+1- Z(J —m+ 1 ))] R
bm | ’

Ym i=1
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and when b; = 0 for some? = 1,2.--- ,m—1, by letting b; — 0 in (A.24)

we have
m—1
Tr 1 —e Ty
P=[142Y (et ) —— -
;((“ bk) Vi bk)
[
T; dm-—1 A — ; i
FMe—2) A D (g -mt 1 - Z(J ——1n+1):z'.j))] .
a; Tm bm j=1
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