• Title/Summary/Keyword: time-dependent characteristic

Search Result 197, Processing Time 0.024 seconds

A high-order gradient model for wave propagation analysis of porous FG nanoplates

  • Shahsavari, Davood;Karami, Behrouz;Li, Li
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • A high-order nonlocal strain gradient model is developed for wave propagation analysis of porous FG nanoplates resting on a gradient hybrid foundation in thermal environment, for the first time. Material properties are assumed to be temperature-dependent and graded in the nanoplate thickness direction. To consider the thermal effects, uniform, linear, nonlinear, exponential, and sinusoidal temperature distributions are considered for temperature-dependent FG material properties. On the basis of the refined-higher order shear deformation plate theory (R-HSDT) in conjunction with the bi-Helmholtz nonlocal strain gradient theory (B-H NSGT), Hamilton's principle is used to derive the equations of wave motion. Then the dispersion relation between frequency and wave number is solved analytically. The influences of various parameters (such as temperature rise, volume fraction index, porosity volume fraction, lower and higher order nonlocal parameters, material characteristic parameter, foundations components, and wave number) on the wave propagation behaviors of porous FG nanoplates are investigated in detail.

A Detection Scheme for Random Signals under Dependent Noise Environment (종속 잡음 환경에서 확률 신호 검파 방식)

  • Kim, Kwang-Soon;Won, Dae-Han;Song, Iick-Ho;Yun, Hyung-Sik;Lee, Ju-Mi;Kim, Sun-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.1
    • /
    • pp.69-75
    • /
    • 2000
  • In this paper, we consider the problem of discrete-time random signal detection problem under the presence of additive noise exhibiting weak dependence The test statistic of the locally optimum detector for correlated random signals under a weakly dependent noise model is derived The performance characteristic of the locally optimum detector is analyzed and compared with that of the square-law detector in terms of the asymptotic relative efficiency.

  • PDF

Influence of Tether Length in the Response Behavior of Square Tension Leg Platform in Regular Waves

  • El-gamal, Amr R.;Essa, Ashraf
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • The tension leg platform (TLP) is a vertically moored structure with excess buoyancy. The TLP is regarded as moored structure in horizontal plan, while inherit stiffness of fixed platform in vertical plane. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of tethers length and wave characteristics such as wave period and wave height on the response of TLP's was evaluated. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether length, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about that is significantly dependent on tether length.

The Vibration Analysis of Composite-VEM Thin-Walled Rotating Beam Using GHM Methodology (회전하는 복합재-VEM 박판보의 GHM 기법을 이용한 진동해석)

  • 박재용;나성수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.337-341
    • /
    • 2004
  • This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic materials technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive materials technology exploits the damping capabilities of viscoelastic material(VEM) embedded into the host structure. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, warping restraint, anisotropy of constituent materials, and warping and rotary inertias. The VEM layer damping treatment is modeled by using the Golla-Mushes-McTavish(GHM) method, which is employed to account for the frequency-dependent characteristic o the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of the application of both techniques, namely, the tailoring and damping technology on vibration response of thin-walled beam structure exposed to external time-dependent excitations.

  • PDF

The mechanism of apoptosis induced by eugenol in human osteosarcoma cells

  • Shin, Sang-Hun;Park, Jae-Hyun;Kim, Gyoo-Cheon;Park, Bong-Soo;Gil, Young-Gi;Kim, Chul-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.1
    • /
    • pp.20-27
    • /
    • 2007
  • Eugenol is commonly used in dentistry for the sedation of toothache, pulpitis, and dental hyperalgesia. This study was performed to investigate the apoptotic effect of eugenol to human osteosarcoma (HOS) cells and the potential use of this compound in osteosarcoma cells. Eugenol showed the apoptotic effect in HOS cells in dose- and time-dependent manner. Fragmentation and condensation of DNA were showed by TUNEL assay, Hemacolor stain and Hoechst stain. In the DNA electrophoresis analysis, cells showed DNA degradation characteristic of apoptosis with a ladder pattern of DNA fragments. Apoptosis-related factors were analyzed by western blotting. Cells treated with eugenol showed caspase-3, PARP, lamin A and DFF-45 cleavage. Eugenol treatment induced caspase-3 cleavage and activation. Cleavages of PARP, DFF-45 and lamin A were accompanied with activation of caspase triggered by eugenol in HOS cells. Though this study needs more investigations, these results suggest that eugenol induce apoptosis via caspase dependent pathway in HOS cells and eugenol may constitute a potential antitumor compound against osteosarcoma cells.

Evaluating Unsaturated Hydraulic Properties of Compacted Geomaterials in Road Foundations (II) : Numerical Analysis (다져진 도로기초 재료의 불포화투수특성 평가 (II) : 수치해석)

  • Sung, Yeol-Jung;Park, Seong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.83-90
    • /
    • 2011
  • A need still exists that the unsaturated condition is to be considered when evaluating the infiltration and drainage capacity for compacted geomaterials in road foundation or embankments. For this reason, numerical analysis were used to analyze the time-dependent unsaturated infiltration and drainage condition depending on various geomaterial types. Therefore, laboratory data from the soil-water characteristic curve tests on geomaterials were adopted from previous studies. In addition, the unsaturated permeability was estimated using SWCC. Then the infiltration and drainage performance of unsaturated compacted soils were evaluated under various conditions based on the proposed method. The results demonstrated that the effect of initial suction and SWCC path on each material could be substantial and the proper application on analysis is very important to enhance the prediction on each capacity.

Construction of the I-PD Control System by Multilayer Neural Network (다층 신경망에 의한 I-PD 제어계의 구성)

  • 고태언
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.74-79
    • /
    • 2002
  • Many control techniques have been proposed in order to improve the control performance in discrete-time domain control system. In control system using these techniques, the response-characteristic of system is dependent on the gains of the controller. Specially, There is a need to readjust the gain of controller when the response of system is changed by disturbance or load fluctuation. In this paper, I-PD controller and pre-compensator are designed by multilayer neural network. The gains of I-PD controller and pre-compensator are adjusted automatically by back propagation algorithm when the response characteristic of system is changed under a condition. Applying this control technique to the position control system using a DC servo motor as a driver, the control performance of controller is verified by the results of experiment.

  • PDF

Voltage-Current Characteristics According to Fault Period of Flux-Lock SFCL with subtractive polarity winding (감극결선용 자속구속형 전류제한기의 사고주기별 전압전류 특성)

  • Han, Tae-Hee;Hwang, Jong-Sun;Cho, Yong-Sun;Park, Hyoung-Min;Nam, Guong-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Lim, Sung-Hun;Chung, Dong-Chul;Choi, Myoung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.101-102
    • /
    • 2006
  • We investigated the characteristics of flux-lock type superconducting fault current limiter (SFCL) by the fault cycles. Since the recovery characteristics of a superconducting element in the flux-lock type SFCL were dependent on the winding' direction between two coils, the analysis for the recovery characteristics of this type SFCL together with the current limiting characteristic is necessary to apply it to power system. As the fault cycles was increased from 1 cycle to 5 cycles, the initial limiting current ($I_{ini}$) and quench characteristic were mostly same. As the fault period increases, the recovery time of the superconducting element increases. The consumed energy and recovery characteristics in a superconducting element show the same tendency.

  • PDF

Unconfined Compressive Strength Characteristics and Time Dependent Behavior of Soil-Cement (소일시멘트의 일축압축강도 특성 및 시간의존 거동)

  • Kim, Jong-Ryeol;Kang, Hee-Bog;Kang, Hwa-Young;Kim, Do-Hyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.87-96
    • /
    • 2004
  • As a special concrete, which is a mixture of soil, cement and water, has strength like regular concrete for pavement, soil cement has been used in various field such as pavement and soft soil improvement. The objective of this study was to investigate the characteristic of unconfined compressive strength and time dependent behavior of soil cement that is made from decomposed granite soil or coluvial and inorganic solidification liquid. The results showed that the unconfined compressive strength appears to increase as the amount of cement and curing time increase In addition, the strength seems to decrease with increase of the potion of fine particles(No 200 sieve). The result of XRD indicated that there is Vermiculite, the product of reaction, in the soil cement. The dynamic properties of material, such as shear complex compliance, shear complex modulus, and phase angle could be calculated from the hysteresis loop obtained from the Haversine Creep Tests. Finally, creep behavior was able to be predicted from these dynamic properties.

Analysis of a transmission line on Si-based lossy structure using Finite-Difference Time-Domain(FDTD) method (손실있는 실리콘 반도체위에 제작된 전송선로의 유한차분법을 이용한 해석)

  • 김윤석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1527-1533
    • /
    • 2000
  • Basically, a general characterization procedure based on the extraction of the characteristic impedance and propagation constant for analyzing a single MIS(Metal-Insulator-Semiconductor) transmission line is used. In this paper, an analysis for a new substrate shielding MIS structure consisting of grounded cross-bars at the interface between Si and SiO2 layer using the Finite-Difference Time-Domain (FDTD) method is presented. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded cross bar lines over time-domain signal has been examined. The extracted distributed frequency-dependent transmission line parameters and corresponding equivalent circuit parameters as well as quality factor have been examined as functions of cross-bar spacing and frequency. It is shown that the quality factor of the transmission line can be improved without significant change in the characteristic impedance and effectve dielectric constant.

  • PDF