• Title/Summary/Keyword: time resolution

Search Result 3,323, Processing Time 0.036 seconds

Kriging of Daily PM10 Concentration from the Air Korea Stations Nationwide and the Accuracy Assessment (베리오그램 최적화 기반의 정규크리깅을 이용한 전국 에어코리아 PM10 자료의 일평균 격자지도화 및 내삽정확도 검증)

  • Jeong, Yemin;Cho, Subin;Youn, Youjeong;Kim, Seoyeon;Kim, Geunah;Kang, Jonggu;Lee, Dalgeun;Chung, Euk;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.379-394
    • /
    • 2021
  • Air pollution data in South Korea is provided on a real-time basis by Air Korea stations since 2005. Previous studies have shown the feasibility of gridding air pollution data, but they were confined to a few cities. This paper examines the creation of nationwide gridded maps for PM10 concentration using 333 Air Korea stations with variogram optimization and ordinary kriging. The accuracy of the spatial interpolation was evaluated by various sampling schemes to avoid a too dense or too sparse distribution of the validation points. Using the 114,745 matchups, a four-round blind test was conducted by extracting random validation points for every 365 days in 2019. The overall accuracy was stably high with the MAE of 5.697 ㎍/m3 and the CC of 0.947. Approximately 1,500 cases for high PM10 concentration also showed a result with the MAE of about 12 ㎍/m3 and the CC over 0.87, which means that the proposed method was effective and applicable to various situations. The gridded maps for daily PM10 concentration at the resolution of 0.05° also showed a reasonable spatial distribution, which can be used as an input variable for a gridded prediction of tomorrow's PM10 concentration.

The Continuous Measurement of CO2 Efflux from the Forest Soil Surface by Multi-Channel Automated Chamber Systems (다중채널 자동챔버시스템에 의한 삼림토양의 이산화탄소 유출량의 연속측정)

  • Joo, Seung Jin;Yim, Myeong Hui;Ju, Jae-Won;Won, Ho-yeon;Jin, Seon Deok
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.32-43
    • /
    • 2021
  • Multichannel automated chamber systems (MCACs) were developed for the continuous monitoring of soil CO2 efflux in forest ecosystems. The MCACs mainly consisted of four modules: eight soil chambers with lids that automatically open and close, an infrared CO2 analyzer equipped with eight multichannel gas samplers, an electronic controller with time-relay circuits, and a programmable logic datalogger. To examine the stability and reliability of the developed MCACs in the field during all seasons with a high temporal resolution, as well as the effects of temperature and soil water content on soil CO2 efflux rates, we continuously measured the soil CO2 efflux rates and micrometeorological factors at the Nam-san experimental site in a Quercus mongolica forest floor using the MCACs from January to December 2010. The diurnal and seasonal variations in soil CO2 efflux rates markedly followed the patterns of changes in temperature factors. During the entire experimental period, the soil CO2 efflux rates were strongly correlated with the temperature at a soil depth of 5 cm (r2 = 0.92) but were weakly correlated with the soil water content (r2 = 0.27). The annual sensitivity of soil CO2 efflux to temperature (Q10) in this forest ranged from 2.23 to 3.0, which was in agreement with other studies on temperate deciduous forests. The annual mean soil CO2 efflux measured by the MCACs was approximately 11.1 g CO2 m-2 day-1. These results indicate that the MCACs can be used for the continuous long-term measurements of soil CO2 efflux in the field and for simultaneously determining the impacts of micrometeorological factors.

A Deconstructive Understanding the Concept of Haewon in Daesoon Truth: From the Perspective of Derrida's Deconstruction Theory (대순진리의 해원(解冤)사상에 대한 해체(解體)론적 이해 -자크 데리다(Jacques Derrida)의 해체론을 중심으로-)

  • Kim, Dae-hyeon
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.39
    • /
    • pp.69-97
    • /
    • 2021
  • 'Déconstruction' is a system of thought that induces the emergent property that characterizes contemporary philosophy. The tradition of ancient Greek philosophy evolved over and over again, giving rise to the Renaissance and Enlightenment. It seemed to have reached its end under the historical perspective of modernity. However, contemporary philosophy wanted to see more possibilities through the deconstruction of modern philosophy. If modern philosophy dreams of a strange cohabitation between God and man with the humanistic completion of Plato's philosophy, modern philosophy rejects even that through deconstruction. Although Plato's classical metaphysics is a stable system centered around the absolute, it is ultimately based on God and religion. Under that system, human autonomy is only the autonomy bestowed by God. Contemporary philosophy is one of the results of efforts that try to begin philosophy from the original human voice through deconstruction. Instead of epistemology dependent on metaphysics, they wanted to establish epistemology from human existence and realize the best good that would set humans free through deconstruction. As such, it is no mistake to say that deconstruction is also an extension of the modern topic of human freedom. Deconstruction and human freedom act as one body in that the two cannot be separated from each other. Oddly enough, Daesoon Thought, which seems to have religious faith and traditional conservatism as main characteristics, has an emergent property that encompasses modern and contemporary times. The period of Korea, when Kang Jeungsan was active and founded Daesoon Thought, has an important meaning for those who have a keen view of history. Such individuals likely think that they have found a valuable treasure. This is because that period was a time when ideological activities were conducted due to an intense desire to discover the meaning of human freedom and envision a new world without copying the ways of the West. Instead they looked to face internal problems and raise people's awareness through subjectivity. In other words, the subtle ideas created by Korea's self-sustaining liberalism often take the form of what is commonly called new religions in modern times. Among these new religions, Daesoon Thought, as a Chamdonghak (true Eastern Learning), aims to spread a particular modern value beyond modern times through the concept of Haewon (the resolution of grievances) that was proclaimed by Jeungsan. The Haewon espoused in Daesoon Thought is in line with the disbandment of modern philosophy in that it contains modernity beyond modern times. First, Haewon means to resolve the fundamental resentment of human existence, which arose from Danju's grievance. Secondly, Haewon in Daesoon Thought encompasses the Haewon of the Three Realms of Heaven, Earth, and Humanity centers on a Haewon-esque style of existence called Injon (Human Nobility). Haewon in Daesoon Thought can be understood in the same context as Derrida's philosophy of Deconstruction. Modern deconstruction attempts to expose the invisible structures and bonds within human society and attempt to destroy them. In a similar way, Haewon endeavors to resolve the conflicts among the Three Realms by releasing the bonds of fundamental oppression that hinder the Three Realms of Heaven, Earth, and Humanity.

Diagnosis of Nitrogen Content in the Leaves of Apple Tree Using Spectral Imagery (분광 영상을 이용한 사과나무 잎의 질소 영양 상태 진단)

  • Jang, Si Hyeong;Cho, Jung Gun;Han, Jeom Hwa;Jeong, Jae Hoon;Lee, Seul Ki;Lee, Dong Yong;Lee, Kwang Sik
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.384-392
    • /
    • 2022
  • The objective of this study was to estimated nitrogen content and chlorophyll using RGB, Hyperspectral sensors to diagnose of nitrogen nutrition in apple tree leaves. Spectral data were acquired through image processing after shooting with high resolution RGB and hyperspectral sensor for two-year-old 'Hongro/M.9' apple. Growth data measured chlorophyll and leaf nitrogen content (LNC) immediately after shooting. The growth model was developed by using regression analysis (simple, multi, partial least squared) with growth data (chlorophyll, LNC) and spectral data (SPAD meter, color vegetation index, wavelength). As a result, chlorophyll and LNC showed a statistically significant difference according to nitrogen fertilizer level regardless of date. Leaf color became pale as the nutrients in the leaf were transferred to the fruit as over time. RGB sensor showed a statistically significant difference at the red wavelength regardless of the date. Also hyperspectral sensor showed a spectral difference depend on nitrogen fertilizer level for non-visible wavelength than visible wavelength at June 10th and July 14th. The estimation model performance of chlorophyll, LNC showed Partial least squared regression using hyperspectral data better than Simple and multiple linear regression using RGB data (Chlorophyll R2: 81%, LNC: 81%). The reason is that hyperspectral sensor has a narrow Full Half at Width Maximum (FWHM) and broad wavelength range (400-1,000 nm), so it is thought that the spectral analysis of crop was possible due to stress cause by nitrogen deficiency. In future study, it is thought that it will contribute to development of high quality and stable fruit production technology by diagnosis model of physiology and pest for all growth stage of tree using hyperspectral imagery.

A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images (다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구)

  • Kang, Wonbin;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1505-1514
    • /
    • 2022
  • Image matching is a crucial preprocessing step for effective utilization of multi-temporal and multi-sensor very high resolution (VHR) satellite images. Deep learning (DL) method which is attracting widespread interest has proven to be an efficient approach to measure the similarity between image pairs in quick and accurate manner by extracting complex and detailed features from satellite images. However, Image matching of VHR satellite images remains challenging due to limitations of DL models in which the results are depending on the quantity and quality of training dataset, as well as the difficulty of creating training dataset with VHR satellite images. Therefore, this study examines the feasibility of DL-based method in matching pair extraction which is the most time-consuming process during image registration. This paper also aims to analyze factors that affect the accuracy based on the configuration of training dataset, when developing training dataset from existing multi-sensor VHR image database with bias for DL-based image matching. For this purpose, the generated training dataset were composed of correct matching pairs and incorrect matching pairs by assigning true and false labels to image pairs extracted using a grid-based Scale Invariant Feature Transform (SIFT) algorithm for a total of 12 multi-temporal and multi-sensor VHR images. The Siamese convolutional neural network (SCNN), proposed for matching pair extraction on constructed training dataset, proceeds with model learning and measures similarities by passing two images in parallel to the two identical convolutional neural network structures. The results from this study confirm that data acquired from VHR satellite image database can be used as DL training dataset and indicate the potential to improve efficiency of the matching process by appropriate configuration of multi-sensor images. DL-based image matching techniques using multi-sensor VHR satellite images are expected to replace existing manual-based feature extraction methods based on its stable performance, thus further develop into an integrated DL-based image registration framework.

A Study of Masterplot of Disaster Narrative between Korea, the US and Japan (한·미·일 재난 서사의 마스터플롯 비교 연구)

  • Park, In-Seong
    • Journal of Popular Narrative
    • /
    • v.26 no.2
    • /
    • pp.39-85
    • /
    • 2020
  • This paper examines the aspects of disaster narrative, which makes the most of the concept of 'masterplot' as a narrative simulation to solve problems. By analyzing and comparing the remnants of 'masterplots' operating in the disaster narratives of Korea, the United States, and Japan, the differences between each country and social community problem recognition and resolution will be discussed. Disaster narrative is the most suitable genre for applying the 'masterplot' toward community problem solving in today's global risk society, and the problem-solving method has cognitive differences for each community. First, in the case of American disaster narratives, civilian experts' response to natural disasters tracks the changes of heroes in today's 'Marvel Comic Universe' (MCU). Compared to the past, the close relationship between heroism and nationalism has been reduced, but the state remains functional even if it is bolstered by the heroes' voluntary cooperation and reflection ability. On the other hand, in Korea's disaster narratives, the disappearance of the country and paralysis of the function are foregrounded. In order to fill the void, a new family narrative occurs, consisting of a righteous army or people abandoned by the state. Korea's disaster narratives are sensitive to changes after the disaster, and the nation's recovery never returns to normal after the disaster. Finally, Japan's disaster narratives are defensive and neurotic. A fully state-led bureaucratic system depicts an obsessive nationalism that seeks to control all disasters, or even counteracts anti-heroic individuals who reject voluntary sacrifices and even abandon disaster conditions This paper was able to diagnose the impact and value of a 'masterplot' today by comparing a series of 'masterplots' and their variations and uses. In a time when the understanding and utilization of 'masterplots' are becoming more and more important in today's world where Over-the top(OTT) services are being provided worldwide, this paper attempt could be a fragmentary model for the distribution and sharing of global stories.

Effects of Conflict Management Strategy Within Supply Chain on Partnership and Performance (공급망 내 갈등관리전략이 파트너십과 성과에 미치는 영향)

  • Ham, Yoon-Hee;Song, Sang-Hwa
    • Korean small business review
    • /
    • v.42 no.1
    • /
    • pp.79-105
    • /
    • 2020
  • While individual enterprises with different objectives each other within supply chains require a variety of resources to achieve their own seeking goals and performances, it is necessary to form interdependent relationships among the enterprises to secure the resources what they need, as the individual enterprises are supposed to have limitations on such as time, space and cost to secure all the resources. In this process, conflict possibilities rise and opportunistic behaviors increase due to those environmental factors such as unbalanced information among enterprises, limited rationality, pursuit of interests, and risk aversion. Those existing studies on conflicts in the field of supply chains have limitations in that they failed to present specific conflict management strategies based on the conflict types from the perspective of the conflict resolution mechanism as the studies have made only focused on investigating the causes of conflicts and the impact of conflicts on performance. In this study, therefore, it used the TKI model of Kilmann and Thomas(1977) to subdivide the conflict management strategies in the process of transactions within supply chains by enterprises, and looked into the impact on partnership and performance according to each strategy. As the results, it showed that those types of conflict management strategies such as concession type and cooperation type had a positive(+) impact on the relationship commitment as a factor of partnership, and it was identified that the relationship commitment had a positive(+) impact on performance. In other words, it can be considered that the enterprises making use of the concession type & the cooperation type conflict management strategies under the situation of conflict would be able to have a very positive impact on their performances if they can make good relationship commitment such as investments in and efforts for the sustainable relationship along with the conflict management, while recognizing the importance of relationship. The most important meaning of this study lies on in terms of that it would be contributable to strengthening the partnership between enterprises and minimizing the risk of supply chains caused by conflicts through these results from the study.

A Study on Damage factor Analysis of Slope Anchor based on 3D Numerical Model Combining UAS Image and Terrestrial LiDAR (UAS 영상 및 지상 LiDAR 조합한 3D 수치모형 기반 비탈면 앵커의 손상인자 분석에 관한 연구)

  • Lee, Chul-Hee;Lee, Jong-Hyun;Kim, Dal-Joo;Kang, Joon-Oh;Kwon, Young-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.5-24
    • /
    • 2022
  • The current performance evaluation of slope anchors qualitatively determines the physical bonding between the anchor head and ground as well as cracks or breakage of the anchor head. However, such performance evaluation does not measure these primary factors quantitatively. Therefore, the time-dependent management of the anchors is almost impossible. This study is an evaluation of the 3D numerical model by SfM which combines UAS images with terrestrial LiDAR to collect numerical data on the damage factors. It also utilizes the data for the quantitative maintenance of the anchor system once it is installed on slopes. The UAS 3D model, which often shows relatively low precision in the z-coordinate for vertical objects such as slopes, is combined with terrestrial LiDAR scan data to improve the accuracy of the z-coordinate measurement. After validating the system, a field test is conducted with ten anchors installed on a slope with arbitrarily damaged heads. The damages (such as cracks, breakages, and rotational displacements) are detected and numerically evaluated through the orthogonal projection of the measurement system. The results show that the introduced system at the resolution of 8K can detect cracks less than 0.3 mm in any aperture with an error range of 0.05 mm. Also, the system can successfully detect the volume of the damaged part, showing that the maximum damage area of the anchor head was within 3% of the original design guideline. Originally, the ground adhesion to the anchor head, where the z-coordinate is highly relevant, was almost impossible to measure with the UAS 3D numerical model alone because of its blind spots. However, by applying the combined system, elevation differences between the anchor bottom and the irregular ground surface was identified so that the average value at 20 various locations was calculated for the ground adhesion. Additionally, rotation angle and displacement of the anchor head less than 1" were detected. From the observations, the validity of the 3D numerical model can obtain quantitative data on anchor damage. Such data collection can potentially create a database that could be used as a fundamental resource for quantitative anchor damage evaluation in the future.

An Installation and Model Assessment of the UM, U.K. Earth System Model, in a Linux Cluster (U.K. 지구시스템모델 UM의 리눅스 클러스터 설치와 성능 평가)

  • Daeok Youn;Hyunggyu Song;Sungsu Park
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.691-711
    • /
    • 2022
  • The state-of-the-art Earth system model as a virtual Earth is required for studies of current and future climate change or climate crises. This complex numerical model can account for almost all human activities and natural phenomena affecting the atmosphere of Earth. The Unified Model (UM) from the United Kingdom Meteorological Office (UK Met Office) is among the best Earth system models as a scientific tool for studying the atmosphere. However, owing to the expansive numerical integration cost and substantial output size required to maintain the UM, individual research groups have had to rely only on supercomputers. The limitations of computer resources, especially the computer environment being blocked from outside network connections, reduce the efficiency and effectiveness of conducting research using the model, as well as improving the component codes. Therefore, this study has presented detailed guidance for installing a new version of the UM on high-performance parallel computers (Linux clusters) owned by individual researchers, which would help researchers to easily work with the UM. The numerical integration performance of the UM on Linux clusters was also evaluated for two different model resolutions, namely N96L85 (1.875° ×1.25° with 85 vertical levels up to 85 km) and N48L70 (3.75° ×2.5° with 70 vertical levels up to 80 km). The one-month integration times using 256 cores for the AMIP and CMIP simulations of N96L85 resolution were 169 and 205 min, respectively. The one-month integration time for an N48L70 AMIP run using 252 cores was 33 min. Simulated results on 2-m surface temperature and precipitation intensity were compared with ERA5 re-analysis data. The spatial distributions of the simulated results were qualitatively compared to those of ERA5 in terms of spatial distribution, despite the quantitative differences caused by different resolutions and atmosphere-ocean coupling. In conclusion, this study has confirmed that UM can be successfully installed and used in high-performance Linux clusters.

The Historical Changes of Seonjam·Chinjam Ritual and Music in the Joseon Dynasty (조선시대 선잠·친잠의례와 음악의 역사적 변천)

  • Song, Ji-Won
    • (The) Research of the performance art and culture
    • /
    • no.39
    • /
    • pp.509-547
    • /
    • 2019
  • The cocoon breeding related national ritual ceremony exercised from the beginning time of Joseon is the 'clothing culture' that has taken its role in the ritual ceremony where it demonstrates the resolution of a state that placed importance in 'things to wear'. During the reign of King Seongjong, it enhanced the level of importance by adding the 'procedure to pick up the mulberry leaved by the queen personally'. During the reign of King Youngjo, the implication of the ritual ceremony was even more expanded that there was an new emergence of new type of national ceremony for the Joseon Era with its first ritual ceremony for woman to personally administer the memorial ceremony to the 'woman divinity' in addition to the 'Jakheonrye' procedure to personally present by the queen for the cocoon breeding. This is intended to meet the status of chingyeonguirye (farming-friendly ceremony) with King Youngjo to personally cultivate the dry field after administering Seonnongje (good harvest paying ceremony) that it is conspicuously demonstrating the importance of farming and cocoon breeding activities. As a result, the Chinjam (a type of ceremony that queen personally breeds cocoon for fabrics) related ceremonial rite that was rearranged during the reign of King Youngjo was settled into 11 ceremonial rites with the expansion of its contents. It ranges from the procedure to leave the palace for carrying out the ritual ceremony to the procedure for the crown princess and Hyebin-gung to accompany the queen, ritual for the queen to devote the Jakheonrye to exercise Chinjam, the ritual for the king to announce his royal message, johyeonui (morning assembly) exercised after completing Chinjam, it is the ritual for the queen to receive the box that contained the cocoon. This type of ritual ceremony is a significant expansion when compared with the exercise carried out earlier and it is part of characteristics displayed for ritual overhaul trend in the reign of King Youngjo. In the main procedures of these ceremonial rites, the music is accompanied and the music includes folk music, inspiration and so forth. The Chinjam related ritual ceremony in the reign of King Youngjo was established in the direction to establish it as the ritual ceremony for a woman who had the divine role of the seonjamje ritual to administer the ritual in a way of having the justification and reality to be consistent.