• 제목/요약/키워드: time prediction

검색결과 5,939건 처리시간 0.036초

Bi-LSTM model with time distribution for bandwidth prediction in mobile networks

  • Hyeonji Lee;Yoohwa Kang;Minju Gwak;Donghyeok An
    • ETRI Journal
    • /
    • 제46권2호
    • /
    • pp.205-217
    • /
    • 2024
  • We propose a bandwidth prediction approach based on deep learning. The approach is intended to accurately predict the bandwidth of various types of mobile networks. We first use a machine learning technique, namely, the gradient boosting algorithm, to recognize the connected mobile network. Second, we apply a handover detection algorithm based on network recognition to account for vertical handover that causes the bandwidth variance. Third, as the communication performance offered by 3G, 4G, and 5G networks varies, we suggest a bidirectional long short-term memory model with time distribution for bandwidth prediction per network. To increase the prediction accuracy, pretraining and fine-tuning are applied for each type of network. We use a dataset collected at University College Cork for network recognition, handover detection, and bandwidth prediction. The performance evaluation indicates that the handover detection algorithm achieves 88.5% accuracy, and the bandwidth prediction model achieves a high accuracy, with a root-mean-square error of only 2.12%.

기존기법과 ARIMA기법을 활용한 최종 침하량 예측에 관한 비교 연구 (A Comparative Study on the Prediction of the Final Settlement Using Preexistence Method and ARIMA Method)

  • 강세연
    • 한국지반환경공학회 논문집
    • /
    • 제20권10호
    • /
    • pp.29-38
    • /
    • 2019
  • 연약지반 안정 및 침하관리에 있어 침하예측기술은 지속적으로 발전되어 공사비 절감과 정확한 토지사용 시기를 확인하는데 활용하고 있으나, 기존 예측방법인 쌍곡선법, Asaoka법, Hoshino법 등은 많은 계측기간이 경과되어야 정확한 침하예측이 가능하여 압밀초기 신속한 예측이 어려운 실정이다. 기존 예측방법이 침하곡선으로부터 산정한 기울기의 비례성 가정을 통해 장래침하량을 추정하는 사유로 판단된다. 본 연구에서는 시계열 분석기술 중 ARIMA 기법을 도입하여 기존예측방법과 비교 분석하였다. ARIMA 기법은 지반조건 구분 없이 예측 가능하였으며, 기존방법과 유사한 결과를 조기에 예측(최종침하) 할 수 있었다.

규칙-기반 분류화 기법을 이용한 도로 네트워크 상에서의 주행 시간 예측 알고리즘 (Travel Time Prediction Algorithm using Rule-based Classification on Road Networks)

  • 이현조;니하드카림초우더리;장재우
    • 한국콘텐츠학회논문지
    • /
    • 제8권10호
    • /
    • pp.76-87
    • /
    • 2008
  • 동적 경로 안내 시스템과 같은 첨단 여행 정보 시스템(ATIS)의 발전에 따라 도로 네트워크 상에서 보다 정확한 주행 시간 예측 기법에 대한 연구가 활발히 진행되고 있다. 그러나 기존 대부분의 연구들은 주어진 경로 상의 평균 주행 속도만을 기반으로 주행 시간을 예측한다. 이는 러시아워 시간대의 혼잡한 도로, 주말에 교외로 나가는 대규모의 차량 등과 같은 일별 혹은 주별 도로 교통 상황을 반영하지 못하기 때문에, 주행 시간 예측의 정확도가 저하된다. 이를 해결하기 위해 본 연구에서는 규칙-기반 분류화 기법을 이용한 주행 시간 예측 알고리즘을 제안한다. 제안된 알고리즘은 데이터마이닝 기법인 규칙-기반 분류화 기법을 사용하여, 과거 차량의 궤적 데이터로부터 하루의 시간대별 교통량과 주별 차량의 운행 양식 등 도로 교통 상황을 추출하고, 이를 통해 차량의 주행 시간을 보다 정확하게 예측한다. 제안된 알고리즘 기존의 링크-기반 예측(link-based prediction) 알고리즘, Micro T* 알고리즘[3], 그리고 스위칭 (switching) 알고리즘[10]과 예측 정확도 측면에서 성능 비교를 수행한다. 예측 정확도 성능 비교 결과, 제안된 기법이 타 예측 기법에 비해 MARE (mean absolute relative error) 가 크게 감소하여 성능이 향상됨을 보인다. 그 밖에 다른 기법들과 장단점을 비교하여, 제안된 기법의 유용성을 나타낸다.

결측 택시 Probe 통행속도 예측기법 개발에 관한 연구 (A Study on the Development of a Technique to Predict Missing Travel Speed Collected by Taxi Probe)

  • 윤병조
    • 대한토목학회논문집
    • /
    • 제31권1D호
    • /
    • pp.43-50
    • /
    • 2011
  • 택시 프로브(Probe)를 이용한 구간통행속도 모니터링체계는 지능형교통체계(ITS)의 핵심적인 하부시스템 중 하나이다. 택시 프로브기법을 통해 수집되는 구간통행속도는 도시가로망의 교통상태 모니터링과 통행시간 정보제공에 널리 활용되고 있다. 그러나 택시 Probe기법은 표본수가 적고 교통혼잡으로 인하여 구간통행시간이 자료수집 주기보다 큰 경우, 실시간으로 자료가 수집되지 않는 누락상태가 발생하게 된다. 이러한 누락상태는 단일시간대에서 다중시간대에 걸쳐 발생하게 되며, 기존의 단일시간대 예측기법으로는 다중시간대의 상태를 예측하지 못하는 단점이 있다. 따라서 다중시간대 누락상태에서 실시간 구간통행속도를 예측하기위한 기법이 요구된다. 본 연구에서는 기존의 단일시간대 예측기법의 한계를 극복하면서 단일 및 다중시간대 통행속도를 예측하기위한 기법을 개발하였다. 개발된 모형은 비모수회귀(NPR)을 기반으로 개발되었으며, 다중시간대 예측에도 불구하고 기존의 단일시간대 예측기법보다 우수한 정확도를 보였다.

Deep Recurrent Neural Network for Multiple Time Slot Frequency Spectrum Predictions of Cognitive Radio

  • Tang, Zhi-ling;Li, Si-min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.3029-3045
    • /
    • 2017
  • The main processes of a cognitive radio system include spectrum sensing, spectrum decision, spectrum sharing, and spectrum conversion. Experimental results show that these stages introduce a time delay that affects the spectrum sensing accuracy, reducing its efficiency. To reduce the time delay, the frequency spectrum prediction was proposed to alleviate the burden on the spectrum sensing. In this paper, the deep recurrent neural network (DRNN) was proposed to predict the spectrum of multiple time slots, since the existing methods only predict the spectrum of one time slot. The continuous state of a channel is divided into a many time slots, forming a time series of the channel state. Since there are more hidden layers in the DRNN than in the RNN, the DRNN has fading memory in its bottom layer as well as in the past input. In addition, the extended Kalman filter was used to train the DRNN, which overcomes the problem of slow convergence and the vanishing gradient of the gradient descent method. The spectrum prediction based on the DRNN was verified with a WiFi signal, and the error of the prediction was analyzed. The simulation results proved that the multiple slot spectrum prediction improved the spectrum efficiency and reduced the energy consumption of spectrum sensing.

Prediction of golden time for recovering SISs using deep fuzzy neural networks with rule-dropout

  • Jo, Hye Seon;Koo, Young Do;Park, Ji Hun;Oh, Sang Won;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4014-4021
    • /
    • 2021
  • If safety injection systems (SISs) do not work in the event of a loss-of-coolant accident (LOCA), the accident can progress to a severe accident in which the reactor core is exposed and the reactor vessel fails. Therefore, it is considered that a technology that provides recoverable maximum time for SIS actuation is necessary to prevent this progression. In this study, the corresponding time was defined as the golden time. To achieve the objective of accurately predicting the golden time, the prediction was performed using the deep fuzzy neural network (DFNN) with rule-dropout. The DFNN with rule-dropout has an architecture in which many of the fuzzy neural networks (FNNs) are connected and is a method in which the fuzzy rule numbers, which are directly related to the number of nodes in the FNN that affect inference performance, are properly adjusted by a genetic algorithm. The golden time prediction performance of the DFNN model with rule-dropout was better than that of the support vector regression model. By using the prediction result through the proposed DFNN with rule-dropout, it is expected to prevent the aggravation of the accidents by providing the maximum remaining time for SIS recovery, which failed in the LOCA situation.

HEVC 부호기의 Inter Prediction SAD 연산을 위한 효율적인 알고리즘 (Efficient Computing Algorithm for Inter Prediction SAD of HEVC Encoder)

  • 전성훈;류광기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.397-400
    • /
    • 2016
  • 본 논문에서는 고성능 HEVC 부호기를 위한 Inter Prediction SAD연산 구조의 효율적인 알고리즘을 제안한다. HEVC Inter Prediction에서의 Motion Estimation(ME)은 시간적 중복성을 제거하기 위하여 보간 된 참조 픽처에서 현재 PU와 상관도가 높은 예측 블록을 탐색하는 과정이다. ME는 전역 탐색(full search, FS) 알고리즘과 고속 탐색(fast search) 알고리즘을 이용한다. 전역 탐색 기법은 주어진 탐색 영역내의 모든 후보 블록에 대하여 움직임을 예측하기 때문에 최적의 결과를 보장하지만 연산량 및 연산시간이 많은 단점을 지닌다. 그러므로 본 논문에서는 Inter Prediction의 연산량 및 연산시간을 줄이기 위해 전역탐색에서 SAD연산을 재사용하여 연산 복잡도를 줄이는 새로운 알고리즘을 제안한다. 제안된 알고리즘은 HEVC 표준 소프트웨어 HM16.12에 적용하여 검증한 결과 기존 전역탐색 알고리즘보다 연산시간은 61%, BDBitrate는 11.81% 감소하였고, BDPSNR은 약0.5% 증가하였다.

  • PDF

정보기준과 다중 중심점을 활용한 클러스터별 예측 (Prediction on Clusters by using Information Criterion and Multiple Seeds)

  • 조영희;이계성
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.145-152
    • /
    • 2010
  • 본 연구에서는 시계열 자료를 베이지안 정보기준을 통해 클러스터링 한다. 보다 안정적인 클러스터를 생산하기 위해 다중 중심점을 모델링한 후 이를 이용하여 클러스터를 생성시킨다. 대상 시계열 자료에 대해 예측할 경우 클러스터에 속한 시계열 자료 중 가장 유사한 시계열 자료를 선택하여 모델링한다. 모델로부터 마코프 규칙을 유도해 내고 이 규칙을 이용해 예측정확도를 측정한다. 시계열 자료를 단독으로 모델링한 후 예측한 결과보다 클러스터에 속한 유사시계열 모델링을 통한 예측정확도가 좀 더 높았음을 확인하였다.

지하철 역사 실내 공기질 관리를 위한 실용적 PM10 실시간 예측 (A Practical Approach to the Real Time Prediction of PM10 for the Management of Indoor Air Quality in Subway Stations)

  • 정갑주;이근영
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2075-2083
    • /
    • 2016
  • The real time IAQ (Indoor Air Quality) management is very important for large buildings and underground facilities such as subways because poor IAQ is immediately harmful to human health. Such IAQ management requires monitoring, prediction and control in an integrated and real time manner. In this paper, we present three PM10 hourly prediction models for such realtime IAQ management as both Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models. Both MLR and ANN models show good performances between 0.76 and 0.88 with respect to R (correlation coefficient) between the measured and predicted values, but the MLR models outperform the corresponding ANN models with respect to RMSE (root mean square error).

Identifying Temporal Pattern Clusters to Predict Events in Time Series

  • Heesoo Hwang
    • KIEE International Transaction on Systems and Control
    • /
    • 제2D권2호
    • /
    • pp.125-134
    • /
    • 2002
  • This paper proposes a method for identifying temporal pattern clusters to predict events in time series. Instead of predicting future values of the time series, the proposed method forecasts specific events that may be arbitrarily defined by the user. The prediction is defined by an event characterization function, which is the target of prediction. The events are predicted when the time series belong to temporal pattern clusters. To identify the optimal temporal pattern clusters, fuzzy goal programming is formulated to combine multiple objectives and solved by an adaptive differential evolution technique that can overcome the sensitivity problem of control parameters in conventional differential evolution. To evaluate the prediction method, five test examples are considered. The adaptive differential evolution is also tested for twelve optimization problems.

  • PDF