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'Identifying Temporal Pattern Clusters to Predict
Events in Time Series

Heesoo Hwang

Abstract - This paper proposes a method for identifying temporal pattern clusters to predict events in time series. Instead of
predicting future values of the time series, the proposed method forecasts specific events that may be arbitrarily defined by
the user. The prediction is defined by an event characterization function, which is the target of prediction. The events are
predicted when the time series belong to temporal pattern clusters. To identify the optimal temporal pattern clusters, fuzzy goal
programming is formulated to combine multiple objectives and solved by an adaptive differential evolution technique that can
overcome the sensitivity problem of control parameters in conventional differential evolution. To evaluate the prediction
method, five test examples are considered. The adaptive differential evolution is also tested for twelve optimization problems.
Keywords - event prediction, supervised clustering, fuzzy goal programming, differential evolution

1. Introduction

Time series analysis is fundamental to engineering and
scientific endeavors. In many real applications, studying
the change of temporal features of a non-stationary time
series and identifying the features that are representing
the significance of time instances are important. Tradi-
tional time series analysis employs statistical methods to
model and predict future values of the time series.
Traditional time series analysis methods, such as the
Box-Jenkins method, are limited by the stationarity of the
time series and the normality and independence of the
residuals [7] - [9]. However, for most real time series,
those conditions are not satisfied. One of the most severe
drawbacks of the approach is its inability to identify
complex characteristics, which are due to characterizing
and predicting all points in a time series.

Data mining is the exploration of data with the goal of
discovering hidden patterns. Its uniqueness is found in the
problems addressed-those with large data sets and
complex, hidden relationships. The approaches for times
series data mining require prior knowledge of the types of
structures or temporal patterns to be discovered and
represent these temporal patterns as a set of templates.
The use of predefined templates prevents achieving the
basic data mining goal of uncovering useful, novel, and
hidden temporal patterns [10] - [12]. More recent works
for time series data mining focus on overcoming the
limitations of conventional time series data mining
methods [4,5].

This paper proposes a new approach to applying data
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mining concepts to time series analysis, which establishes
a method of uncovering hidden patterns in time series
data. The method focuses on characterizing and predicting
events, important occurrences localized in time. The
method is capable of handling non-stationary, non-
periodic, irregular, and chaotic deterministic time series.
The prediction model is composed of temporal pattern
clusters optimized by adaptive differential evolution(ADE)
which is capable of adapting control parameters of
conventional differential evolution(DE). The robustness of
the proposed ADE is tested for twelve representative
optimization problems. The event prediction method is
also evaluated for five test examples.

2. Event Prediction

This section explains the concepts of events, cluster
models for event prediction, supervised clustering, and the
combination of multiple objectives.

2.1 Cluster model for event prediction

In a time series, events are important occurrences. An
event is defined depending on the prediction goal. For
example, sharp rises or falls of a stock price are defined
as events. Let X and Z be the daily open prices of
stock to be used in the modeling of event prediction and
its evaluation, respectively. The stock will be bought at
the open of the first day and sold at the open of the
second day. The goal is to pick buy and sell days that
will have greater than expected increases. Thus, the
events are those days when the price increases more than
5%, defining the event characterization function g(?),
which must clearly classify events and non-events in data.
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Now let data satisfying an event characterization function
in X be X, and others be X, A temporal pattern is
a hidden structure in a time series that is characteristic
and predictive of events. The purpose of the event
clustering is to uncover optimal hidden temporal pattern
clusters detecting g(X,,.,) from X. The identified
clusters are used to predict events g(Z,,.,,) in the testing
data Z. Event clustering is based on the assumption that
the observations of similar characteristics in time series
form adjacent points in multi-dimensional space.
Let's consider data as shown in Fig. 1, in which
represents an event X, and X represents a non-event

oen- The number of optimal temporal pattern clusters
needed to predict events, namely, to classify X, alone
in X, is one; that is self-evident. The temporal pattern
cluster is a ellipsoid centered on a cluster centroid with
radius 7, which has a value in the range of [, 7 max J-
The use of 7., as a value of # makes it not only less

likely to classify non-events as events, but also more
likely to classify events as non-events. On the other hand,
7max Makes it not only more likely to classify non-events
as events, but also less likely to classify events as
non-events. The value of » has a fuzzy feature in the
range of [ # i, 7 max J5 1t i uncertain how data of similar
characteristics are located adjacently in multi-dimensional
space. To deal with this, we introduce the fuzzy
membership function of Eq.(1).

Fig. 1 Temporal pattern cluster model for event prediction

Data located inside the cluster with radius 7, have
membership value 1, indicating the crisp event, and data
located outside the cluster with radius 7, have
membership value 0, indicating the crisp non-event. On
the other hand, data located both outside the cluster with
radius 7., and inside the cluster with radius 7, have
a membership value in the range of [0,1], which is
proportional to the distance as in Eq.(1).

0, Ai? ¥ imax
_ L, Ap= T imin .
U1 = (A= Timin)] Fimax— ¥ imin) » ¥ imin A ¥ ima M

Here dj, is the distance between the kth data and the

7#th temporal pattern cluster centroid as in Eq.(2). w«; is

membership value of the Ath data belonging to the ith
temporal pattern cluster.

dikz\/Zi‘ (xu—c)?+ - +ay (Xa—ca)’ @

Here x; is the jth component of the kth data with &
dimension and c¢; is the jth component of the sth
cluster center. g is the weighting factors for the jth
dimension of the jth cluster. During the evolutionary
clustering, the weighting factors are searched in the range
of real values. The negative weighting factors are
considered to be zero, so the corresponding dimensions
are neglected in the calculation of Eq.(2). If all remaining
a;s have the same values, then the cluster is a hyper-
sphere; otherwise, it is an ellipsoid. The sth temporal
pattern cluster is defined by its centroid, radii #,,;, and
¥imar» aNd its weighting factors.

If more than one clusters is identified, we utilize the
concept of fuzzy decision making to determine the degree
of an event. The maximum of the membership values of
Eq.(1) for the clusters is taken as in Eq.(3). If the
maximum value is higher than a threshold &, then the
event is predicted. As the threshold value, usually 0.5 is
taken.

u=max{u; i=1,",¢) €)

c is the number of clusters, and u; is the membership

value of the jth data for the sth cluster.

The fuzzy membership functions will contribute to
classifying the event and non-event data adjacently
located in multi-dimensional space.

2.2 Supervised clustering

An event prediction model is the result of supervised
clustering, Clustering is used to partition the data into a
number of clusters based on their distance measures. Two
issues have been commonly encountered when applying
clustering; the determination of the number of clusters in
the data and the ability of the algorithm to find clusters
containing a highly varying number of data objects. A
method that is applied often in the literature is repetitive
clustering with various numbers of clusters and partition
assessment with cluster validity index [13]. This approach
is time consuming since it requires repetitive modeling.
Moreover, the nature of the data is such that the validity
measures typically give no insight into suitable
partitioning because no distinctive local minima of the
validity function is usually found [14]. To overcome this
problem, supervised event clustering based on multiple
objectives is proposed. As the clustering progresses, a
multi-objective guided search automatically determines
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suitable partitions.

The event clustering is achieved by not only the
maximization of event classification defined by Eq.(4) but
also the minimization of overlapped clusters and cluster
size defined by Eqs.(5) and (6), respectively. After the
clustering, useless clusters that contain no data or only
overlapped data are deleted and minimum and maximum
radii of the clusters are calculated without deteriorating
the performance of the event classification.

X gt NX som
fevent=_;l,; ( ng+ nglc) (4)

Here # is the number of multi-dimensional data. %X,
is the number of events and nX¢,, the number of
non-events, S0 7= nX yons + #X open. B; 15 1 if the ith
datum, which is an event, is classified as an event;
otherwise, it is 0. BY is 1 if the t ¢h datum, which is a
non-event, is classified as a non-event; otherwise, it is 0.

-1
farea_ n ﬁ Mi (5)

=1

Here # is the number of multi-dimensional data, and

M; is the frequency of the sth data belonging to

different clusters.

fmdius = 121 ¥y (6)

Here ¢ is the number of clusters, and #; is the radius

of the 7th cluster.

Eqgs(4), (5) and (6) have different objectives, that must
be combined into one, which will be achieved by fuzzy
goal programming.

2.3 Combination of multiple objectives

Optimization is an important activity in many areas of
science and engineering. The classical framework for the
optimization is the minimization (or maximization) of the
objectives given the constraints for the problem to be
solved. However, many design problems are characterized
by multiple objectives, and a trade-off among various
objectives must be made, leading to under or over-
achievement of different objectives. The fuzzy logic
approach formulates the objectives and the constraints as
membership functions that represent the degree that each
objective is satisfied on a scale of [0,1]. Since
Zimmermann introduced the concept of fuzzy set in
optimization, various fuzzy optimization methods have
been proposed including fuzzy goal programming and
genetic algorithms for the programming [15] - [17].

In event clustering, objectives with different ranges of
goals are scaled to the range of [0,1] through membership

functions. To do this, we adopted Eq.(7) for the maxi-
mization of Eq.(4) and Eq.(8) for the minimization of
Eqs.(5) and (6), respectively.

O, fz< fi*min
1 fz> fz'—max

fi“min_ fl'*max ’ fi‘min<f,‘< fi—max

w(f)= (7)

Here f£; is the sth objective function value, u(f;) the
membership value of f;, f,_ ., the minimum value of
f» and f;_ .. the maximum value of f£,.

L fiX fi-min
ulf) = f(i _, £ F i )
T = oo Fimmin A S imma

Here f; is the sth objective function value, u(f;) the
membership value of f,, f;_mn, the minimum value of
f» and f,_ .. the maximum value of f£;.

In event clustering,
and 1 forf,,, and to 1 and O for f,,., and £,
respectively. By the weighted sum of the membership
values of the objectives, we combine the multiple
objectives into one goal function as in Eq.9). The
trade-off among the objectives can be realized by
changing the associated weight factors. The weight factors

have values in the range of [0,1] and influence the
relative importance of the objectives.

Ficmin and  f;_.. are set to 0

/ltotal(f) = Bevent.u(feuent) + ﬂareaﬂ(farea) + Bmdius/l(fmdius) (9)

Here 14,,(/) is the final goal function to maximize,
The weight factor B, is set to 1, and B,,., and 8,k
are set to 0.01.

3. Optimization

To solve the fuzzy goal programming previously
described, DE is utilized. DE evolves a randomly selected
population that is initialized with a larger number of
individuals (temporal pattern clusters) than assumed
necessary. As the evolution progress, radii of clusters that
don't contain event data become Os and overlapped
regions among clusters become smaller. When the
termination condition of the evolution is met, any
redundant and useless clusters that don't contain any event
or unique events of their own are deleted from the best
temporal pattern clusters. For the remaining clusters, the
minimum and maximum radii of each cluster are
calculated. The ¢;s, 7,8, 7imaS, @;s of the remaining
clusters constitute the model to predict events.
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3.1 Differential evolution

DE is a very simple but powerful population-based,
stochastic function minimizer. DE turned out to be best
genetic algorithm for solving the real-valued test function
suite of the first ICEO [1,2]. DE is a parallel direct
search method, that utilizes parameter vectors as a
population for each generation. The initial population is
chosen randomly. The crucial idea behind DE is a scheme
for generating trial parameter vectors. DE generates new
parameter vectors by adding the weighted difference
vector between population members to another member.
If the resulting vector yields a lower objective function
value than a predetermined population member, the newly
generated vector replaces the vector with which it was
compared.

3.1.1 The DEk variant

We tried a variant of DE that works as follows: for
each vector x,; o(i=1,---, np), a trial vector v,y 18
generated by Eq.(10) which is called DEk to differentiate
between variants of DE.

Xpest.ct X0, G

ViGgr1= 3 +F (xm6t %86~ %6~ %5.0)

with 7, 7y, 73, 7y 5 €[1, npl (10)

Xpes, ¢ 1S the best performing vector until the current
generation. %, ¢ Xme X300 X and x5 are
mutually different vectors selected randomly in the
population. F' is a positive real and constant factor that
controls the amplification of the differential variation
(X ¢+ %m.c—Xm.c—%5.6). G is generation, and np
is population size. To increase the potential diversity of
the perturbed parameter vectors, crossover is introduced.

Let's consider a vector x'; g4, with ¢ dimension of
Eq.(11). A crossover operation of Eq.(12) combines x; ¢
and v; ¢+, and results in Eq.(11).

X i o1 7= (X1 G415 %2, G410 o0 Xai, G+1) (1)

x,ii.G+1:(Uji,G+l*xji,G) i=1,..,d (12)

% is the crossover operator and herein means uniform
crossover of Eq.(13).

vji g1 if (rand<Cr)
X;c  otherwise

X jicr1= (13)
rand €[0,1] is a random variable and C» is the
crossover rate.
To decide whether or not it should become a member
of generation G+ 1, the new vector x'; 5+; of Eq.(11)

is compared to x; . If x"; ;4 yields a smaller objective

function value than x;, then x; gy, is set 0 ', c4p5
otherwise, the old value x; . is retained.

3.1.2 Sensitivity of control parameters

To check the performance of DEk, we selected twelve
optimization test functions considering continuous and
discontinuous, convex and non-convex, single modal and
multi-modal, low dimensional and high dimensional, and
deterministic and stochastic properties as shown in the
appendix. When the global minimum was 0, we defined
the minimization task to be completed once the final
value was obtained with an accuracy better than 10-6. For
f1» we chose a value less than 15 to indicate the global
minimum and a value less than 0.998004 in case of f;.
We experimented with ten test runs with randomly chosen
initial parameter vectors for each test function and each
minimization and measured the average number of
function evaluations required to find the global minimum.
To find optimal parameters Cr and F of DEk, we
executed the experimentation at points with Cr and F
0.2 to 1.0 with a 0.1 increase step. Fig. 2 and Fig. 3
show the average number of function #, evaluations with

different population sizes.

According to the graphs, the average number of
function evaluations is very sensitive to population size,
F, and Cr. As the population increases, the algorithms
are more likely to converge but provide slower
convergence. This is common in evolutionary algorithms
and population size is usually set to 30 to 100 depending
on the complexity of the problems to solve. However, the
values of F and Cr can't be so easily determined.
Genetic algorithms(GAs) have been widely studied, so the
effective values of crossover rate and mutation rate are
known, but that is not the case with DE. Therefore, we
need a mechanism to adapt the control parameters of DEk
depending on the problems.

Fig. 2 Average number of f; evaluations depending on
F and Cr (population size = 6)
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Fig. 3 Average number of f; evaluations depending on
F and Cr (population size = 30)

3.2 Adaptation of control parameters

To overcome the sensitivity of the control parameters,
we propose a self-adaptive mechanism for DEk. The
self-adaptation eliminates difficulty in selecting effective
control parameters for specific problems. As a result, it
reinforces the robustness of DEk and facilitates its use.
Basically, the adaptive mechanism is based on roullet-
wheel selection. For every generation, a control parameter
is selected in a predefined parameter set and the
probability of the control parameter being selected is
proportional to the amount that objective function value is
improved by the control parameter. Regulating the
numbers of the improvement is especially important in a
small parameter set. In the early stage of evolution, a few
control parameters in the set are extraordinary. The
parameters take over a significant proportion, other
parameters lack a fair opportunity of contributing to
improve the objective function value. The linear scaling
of the selected numbers will help. Now let's consider
adaptive differential evolution.

3.2.1 Adaptive F DEk

DEk with the adaptation of control parameter F' is
refferred to as AFDEk. A summary of the AFDEk
procedure follows.

Step 1: Initialize the vector population composed of #np

individual vectors with ¢ dimension generated randomly:
P(H={a1(D, ax(D, -, a,(D}; ap=A{x1, -, x5}. Define
the parameter set F={F;, -, F,;} for F. Define
nF={nFy, -, nF,,} to record the selected numbers of
each element in F; and to initialize to 1s. In this paper,
we used F,={0.2,0.25,0.3,---,1.0}, mk = 17.

Step 2: For every population vector, evaluate the
objective function ( Func): &(H={®(a,; (D), -, ¥a,,(D)},

D ap (D)= Func(x1p, **, X an)-

Step 3: For each individual vector aqy()(i=1,-, np),

select a value for control parameter F' as follows:

. 7
b= ZJ-J‘, if (p;,—{rand<p,) F=F,
=1 ZI”FI

rand<[0,1] is a randomly generated value. Select five
mutually different vectors a,, ., a,3, a4, and as in

the current population, make a trial vector, and then do a
crossover as follows:

v =
' (=) kaD.

Qpest, G+ 20,6
2 +F:(anctasc—aunc—asc)

Step 4: For every population vector, evaluate the
objective function: @()={0(x | (9), -, O(x",,()}. If
the goal is to maximize the
if (O(x" (D)) @(a, (D)), then
nF;= nk;+1.

Step 5: To prevent the overuse of a specific F,, the

objective function,
al)=x(8) and

nF; is adjusted as follows: const=3.0, #F > #F s
and »F,, are the minimum, maximum, and mean values
of nF,, respectively.

For =1 to mk {
if (0F g > (const + nF 40— nF )
A =pF e — nF 4 {
5 a=(const—1) + nF .,/ &
b=nF yg + (NF ay — const » nF 0] &5}
else {
A =nF = nF s a=nF g, 5
b=—nF pnin - BF e &5 }
nFi=a- nF;+ b;
}

Step 6: Check the termination condition. If it is satisfied,
stop. Otherwise, go to step 3.
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Fig. 4 Average number of function evaluations by AFDEk
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For Cr 0.1 to 1 with steps of 0.1 we experimented
with AFDEk for inne test functions f; ~ f;. For each

function and each parameter value of Cr, we tested ten
runs and averaged the number of function evaluations.
The results are shown in Fig. 4. Except for £ and f,

the average number of function evaluations is not
sensitive to Cr in the range between 0.5 and 0.9.
However, f; and f; require extremely different values

of Cr, so Cr must be adapted.

3.2.2 Adaptive F and Cr DEk

DEk with the adaptation of control parameters F and
Cr in the range between 0.2 and 1.0 is called AFCDEKk.
The adaptation mechanism for Cr is identical to that
described for F. C,, and »C,, are defined, and the
same initial values as used for F; and nF, are used
again. We experimented with AFCDEk for nine test
functions f; ~ f;. For each function, we tested ten runs

and averaged the number of function evaluations. The
results with the best control parameters are summarized in
Table 1. For AFCDEk, the only control parameter to
consider is population size.

In Table 1, x indicates that global minimum could be
not found, n.a. stands for "not applicable," * indicates that
not all of the test runs provided the global minimum,
ANM is the annealed version of the Nelder & Mead
strategy, ASA is adaptive simulated annealing, and DE1
and DE2 are two different DE schemes [3]. For those
problems where ANM or ASA could find the minimum,
DEs usually converged faster, especially in the more
difficult cases. Since DE is inherently parallel, a further
speed up can be implemented by parallel computation.
AFDEk and AFCDEk show promising results. The
performance of AFDEKk is superior to that of DEs in most
cases. AFCDEk converged a little slower than AFDEK,
but its deterioration is less severe except the case of f7.
This case requires an extremely low value of Cr as
shown in Fig. 4, which seems to cause the failure to find
the global minimum in all the test runs. According to
Table 1, DEs could find the global optimum with a
comparatively small population size. The small population
usually contributes to fast convergence, so AFDEK,
AFCDEk, and other evolutionary algorithms must be
compared with the same population size.

Using test sets of three objective functions, fi,, f;; and

fi2. an experimental comparison of the algorithms was

performed. The test functions are representatives of the
classes of unmi-modal, multi-modal, and discontinuous
functions. The population size for the algorithms is 200.
For f;;, 40,000 function evaluations were performed for

each run, and for fj, and f,, the number is increased to

100,000. Twenty runs per algorithm are carried out. Table
2 summarizes the mean and standard deviations of the

Table 1 Comparison of test results for function optimization

ANM | ASA | DEI | DE2 | AFDEk | AFCDEK

T | rgs | NP NP NP

F | RS F F o NP

NV} feval Cr Cr nfevgl nfeval

nfeval nfeval nfeval

0 10 6
q | na “1”365 0.5 0.95 3% 6

i 30 |03 0.5 23 318

95 490 392

0 6 6
o | na 11%'55 095 | 0095 110 15

1| B s 0.5 s | 1098

106 746 | 615

300, 10 20

0998 | BT | o3 0.95 20 10
Il 100 038

20 | 3% 1 03 0.2 o | 1048

90258 915 | 1300

300 10 10

098 | 1ES | 075 | 095 10 10
£ 100 0.8

30| 00 | 05 0.2 o8| 2651

X 2378 | 2873

3000 s 20

0995 | 1ES5 1 g% 0.95 15 15
5 100 0.6

500 | 0] 03 0.2 oo | 1155

X 735 828

5E6 10 10

0995 | 'ES5 | g4 0.9 12 12
f6 100 0.8

50 | 40| 02 02 | 58 | 1763

% 834 | 1125

10 30 20

099 | 1ES 1 0.99 20 30
£7 0.1 02 A

50 - 03 02 | 2

X 2167 | 12804

5 10 10

095 | B6 1 43 0.9 12 12
£8 5 300 | g's 0.9 09 | 1013

11864 | & - 786

2116 1559 | 1076

SE4 100 80

0995 | 1E8 | 465 0.6 80 80
o 700 1

is0 | 70 1 i siher | 165380

X 165680 | 254824

(NP: population size, nfeval: number of function evaluations)

Table 2 Comparison of AFDEk, AFCDEK, and other evo-
hationary algorithms

ES! | ES30 |Meta-EP| GA | AFDEk|AFCDEK|
NP
NP | NP 200
20 | 200 NP cr | NP NP
Nsigma| Nsigma | 200 | 0.6 | 200 200
I 30 Mr
0.001
1.09E-8
avg|1.08E-56.672E-1| 1.998E2 |1.65E2| Cr: | 3.4E-6
fl1 0.7
std |4.73E-6|2.610E-1] 6.564E1 |4.74E1|2.61E-8| 6.9E-6
0
oy [ave| 41 0 N
std| 3177 0 0 |4.74E1] 0 0
0.62E-13
avg| 1.326 [1.618E-3| 1.976 |5253| Cr: | 5.8E-12
f10 0.6
std | 1.039 [9.290E-4]6.300E-1|5.1E-1|2.0E-13| 9.4E-12

(NP: population size, avg: average number of function
evaluations, std: standard deviation)
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best objective function values within the last generation
of the runs.

The parameters used in Evolution Strategy (ES1, ES30),
Meta-Evolutionary Programming (Meta-EP), and GA are
defined in the literature [6]. The comparison of just three
objective functions prevents drawing general conclusions,
but Table 1 and Table 2 show that AFDEk and AFCDEk
perform very well. Thus other advantages are easiness of
use and robustness; population size is the only parameter
considered.

4. Test Examples

To evaluate the proposed event prediction method, five
test examples are considered. For all cases, the initial
parameter settings are as follows: cluster number is 10,
population size is 50, generation number is 500.

4.1 Nonlinear system

In this section, a static and nonlinear system of Eq.(14)
is considered. Fifty input-output data are obtained [18].
The data of x5 and x, are given as dummy inputs to
check the modeling method's the ability to uncover
hidden structures. The first half of the data is utilized for
building up an event prediction model and the rest for the
evaluation of the model. As an event characterization
function, Eq.(15) is used.

y=Q1+x+ 2" 1<x, x,<5 (14)

&(y=2.5) (15)

As a result, three temporal pattern clusters for the
events are obtained as in Fig. 5. The result shows the
weighting factors ag; of x; and x4 in Eq.2) are all
zeros, i.e.. considering x5 and x, is unnecessary when
we predict events since x; and x; are dummy inputs.

Fig. 6 shows the prediction result for the evaluation data.
Considering that an outlier (data not made by Eq.(14)) is
present in the evaluation data, the prediction is excellent.

& ot 3 [X] 84 EX [ &7 o5 [
X2

Fig. 5 Event prediction model (prediction accuracy=100%)

3 ar o2 w3 c4 (1] ok ar T8 3

Fig. 6 Result of event prediction (prediction accuracy=96%)
4.2 Box and Jenkins' gas furnace

As a dynamical process, we consider a gas furnace with
single input #(# (gas flow rate) and single output (%)
( CO, concentration). Among 296 data points, the first
half of the data is utilized for building up an event
prediction model and the rest for the evaluation of the
model [8,18]. As an event characterization function,
Eq.(16) is used. Under the assumption, we don't know
input-output  relationships to describe the process
effectively, we consider ten variables; y(¢—1) -
w(t—4), u(t—1) --- u(¢—6), as inputs. Of course, we
know two inputs, and z(¢t—4) and y(¢—1) are usually
enough to define the process.

2(50</(H<57) (16)

£X) EL) 2 58

by
¥t-1)

Fig. 7 Event prediction model (prediction accuracy=98.6%)

c4 X3
yit-1)

Fig. 8 Result of event prediction (prediction accuracy=93.1%)
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As a result, one temporal pattern cluster is identified as
in Fig. 7, in which the only two inputs, z(f—4) and
y(#—1) contribute to the cluster, which means that the
method is capable of discovering hidden patterns in data.
Fig. 8 shows the prediction result for the evaluation data.

4.3 Chaotic Mackey-Glass time series

As an example of chaotic process, we consider a
Mackey-Glass time series that is quasi-periodic and
chaotic [19]. From Eq.(17), 1500 data points are
generated. 500 data points are used for building an event
prediction model and the next 500 data points for the

evaluation of the model. Inputs are x(#), x(¢—86),
x(t—12), and x(t—18), and output is x(¢+6).

. — ax( {— Tz 17

o =BT T T a7

where ¢=0.2, f=-0.1, r=17, x(0)=1.2.

The results of the prediction are shown in Table 3 for
five different event functions characterized by Eq.(18).
The average prediction accuracy for the modeling and
evaluation is more than 95.6% and 94.7%, respectively.

gxzﬂi&%@(ﬁ ’ (18)

Table 3 Results of event prediction in chaotic time series

2(2>0.] 2(0.01<g, [g(0 < £.<|g(-0.01 < g[g(g.<-0.
05) | <0.05) | 0.01) <0) 01))

No. of clusters 1 2 2 2 2

Prediction aceuracy) ;000 | o6 4704 | 92.4% | 902% | 98.8%
in modeljng

IPrediction accuracy|

. . 99.6% | 95.6% 90.8% 89.2% | 98.2%
in_evaluation

4.4 Trend of stock price

As an example of financial data, we deal with stock
price data, which consists of 100 data points, ten inputs,
x1(D - x(H, and one output, ¥(#H. A detailed
description of the variables is explained in the literature
[18]. The results of the prediction are shown in Table 4
for five different event characterization functions. The
average prediction accuracy is more than 92.8%.

Table 4 Results of event prediction for stock price

ey =s) POV EITEOY = yycio)

No. of clusters 2 1 2 1 1

Prediction accuracy| 91% 87% | 94% 93% 99%

4.5 Boston housing price

This example uses housing price data in Boston [20].

Instead of trying to predict all housing values, we try to
predict the value of the top 20% of houses, a task similar
to that often carried out in market research. We consider
506 cases in which each case describes eleven house
characteristics that might be expected to affect house
prices. 350 cases are used for building the prediction
model and the rest are used for the evaluation. The event
prediction aims to forecast the value of the top 20% of
houses. Table 5 shows the comparative result with See5
[20], which has a reputation for fast and robust
classification algorithms. The predictions show reliable
performance.

Table S Comparative results of event prediction for
Boston housing values

Algorithm : .Predlctlon accur:flcy :
in modeling in evaluation

Our method 96.28% 96.15%

See$ 97.71% 93.59%

5. Conclusion

In this paper a method for identifying temporal pattern
clusters to predict events in a time series was proposed.
To identify optimal temporal pattern clusters, fuzzy goal
programming is formulated to combine multiple objectives
and solved by ADE. The presented ADE technique
tackled the sensitivity problem of control parameters in
conventional DE. The test results for twelve optimization
problems showed ADE had the best performance
compared with other evolutionary algorithms. The event
prediction method was evaluated for five test examples
and yielded meaningful results of a prediction accuracy of
more than 93%. Even with a complex, non-stationary,
chaotic time series, such as a gas furnace, Mackey-Glass
data, and stock price, the method uncovered predictive
hidden patterns. For the top 20% of Boston house values,
our method resulted in a comparatively reliable prediction
model.
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Appendix
Twelve optimization problems selected to test adaptive
differential follows.
= glx ?, —5.12<x,<5.12; the minimum is 0.
A=100 (xi-x)"+ (1—x)2
—2.048 <x,;<2.048; the minimum is 0.
f3=25+ 121 lx;1; L x;] rounds x; to the nearest
integer. —5.12<x,<5.12; the minimum is 0.
fi= gl(i - x 4+ rand()),

minimum is 0. ragnd() is a random variable with
uniform distribution.
1

—1.28<x;<1.28; the

fs

0.002+ 3 1 ’
=i gl (xi_aji)e
—65.536 <x,<65.536, and the minimum is
0.998004 -32,-16,0,16, 32,
7=0,1,2,3,4, @1= @jmears.0o and mod means

where a)=

remainder after division. a,=q;4,(£k=1,2,3,4)
aj2 ap=-—32,—16,0,16,32, ;5=0,5,10,15,20,
and

i S 0.15(2i=0.05sgn(2))", lxi—24<0.05
6 =1 di' X %, |x,-—21120.05

where

2i= Ll 1+0.49999 | - sgn(x) - 0.2,
d;= 1, 1000, 10, 100, |x1<0.05 i=1,2,3,4
— 1000 <x,<1000, and the minimum is 0.

2 x;

X i i= ] .
= &0 T o 1cos,(—\;—lr.)+l, — 400 <x;<400;
the minimum is 0.
fi=9—x1— 2 2100 x50, (x1—3)°+(x,—2)"<186,
x1%,<14. The minimum is 0.
fo= ﬁoxi-zi If z,&[—1,11, then fy(x; z)=[—1,1],

2= il,z, then fg(X,‘,Z,‘)Z T16(12)
—1000 <%,<1000; the minimum is Ty(z;)
10558.1450229.

fu=—Wexp[-0.2) & 2#] —exp[ 3 cos 11|

else if
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fu= ﬁlx 2 —30<x,<30; the minimum is 0.

J= 21 l x;4+0.51% L x;+0.5] rounds x;+0.5 to

the nearest integer, —30<x,<30; the minimum is
0.




