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A Practical Approach to the Real Time Prediction of PM10 for the Management of Indoor 

Air Quality in Subway Stations
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Abstract - The real time IAQ (Indoor Air Quality) management is very important for large buildings and underground 

facilities such as subways because poor IAQ is immediately harmful to human health. Such IAQ management requires 

monitoring, prediction and control in an integrated and real time manner. In this paper, we present three PM10 hourly 

prediction models for such realtime IAQ management as both Multiple Linear Regression (MLR) and Artificial Neural Network 

(ANN) models. Both MLR and ANN models show good performances between 0.76 and 0.88 with respect to R (correlation 

coefficient) between the measured and predicted values, but the MLR models outperform the corresponding ANN models with 

respect to RMSE (root mean square error).
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1. Introduction 

In big cities, subways are one of the most important 

urban resources and infrastructure that millions of citizens 

use every day. In subways, the management of indoor air 

quality (IAQ) raises both legislative concerns and scientific 

interests because poor IAQ can immediately and seriously 

cause harmful effects on human health in underground 

facilities such as subways [1-6]. IAQ is defined with the 

measurements of various air pollutants. In Korea, there is a 

national law on the management of ten air pollutants in 

indoor air: PM10 (Particulate Matter with a diameter of 10 

micrometers or less), CO2 (Carbon Dioxide), Formaldehyde, 

TAB (Total Airborne Bacteria), CO (Carbon Monoxide), NO2 

(Nitrogen Dioxide), Radon, VOCs (Volatile Organic Compounds), 

Asbestos, and O3 (Ozone). PM10 is usually considered to be 

the most common and imminent pollutant. According to 

this law, the concentration of PM10 must be kept below 

150 μgm-3.

The IAQ management largely depends on the ventilation 

systems with air filters. Ventilation systems generally dilute 

and displace indoor air pollutants by the mechanically- 

forced air circulation (often, through filters) between 

outdoor and indoor spaces. However, ventilation for large 

facilities such as subways requires a substantial amount of 

energy consumption and therefore is usually used when IAQ 

is poor. Such energy-efficient IAQ management requires IAQ 

to be monitored and predicted in a real time manner as 

shown in Fig. 1. The model-based IAQ prediction is crucial 

because it takes time for ventilation (i.e., air circulation) to 

improve IAQ and therefore the operation of ventilation 

systems needs to be decided, based on future IAQ values 

from prediction models, not on the current IAQ values from 

sensors.

그림 1 지능형 실시간 실내 공기질 관리

Fig. 1 Intelligent real time IAQ management
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In this paper, we first propose a practical approach to the 

development of prediction models for IAQ in subways that are 

intended for the real time IAQ management. As opposed to 

conventional approaches where the research focus is generally 

on the model optimization for high precision prediction, our 

approach aims at the effective applicability of prediction 

models in real world environments. Second, we present 

multiple prediction models for PM10 that are designed 

according to the model design strategies. Then, we evaluate 

their performances. They are implemented as Artificial Neural 

Network (ANN) and Multiple Linear Regression (MLR) models. 

These models are developed on the datasets from a large scale 

project to monitor the IAQ of subway stations in Seoul from 

2008 to 2012. In the project, the concentration of PM10 was 

measured by TMS (Tele-Monitoring System) every 30 seconds 

and so 120 measurements were collected during each hour. In 

fact, these datasets have been used for other studies on IAQ 

[24-31]. 

This current work is a part of our development project for 

ICT systems to integrate monitoring, data management, 

prediction, and control for smart city applications in an 

intelligent and real time manner [14, 15, 20-22]. The ICT 

systems include a sensor network system for real time 

monitoring, a sensor data management system, a simulation 

support system for various prediction models, and a planning 

system for control systems.

2. Challenges to the IAQ prediction in Subways and 

Design Strategies for Prediction Models

In this paper, we explain challenges for the effective 

prediction of IAQ in subways and then propose a practical 

approach to how to design prediction models to address those 

challenges efficiently. The challenges are as follows. First, 

IAQ sensors are prone to the easy contamination of air 

pollutants such as dusts, but in subways, indoor air contains 

a lot higher concentrations of pollutants than ambient air. 

Without frequent and careful maintenance (e.g., cleaning and 

calibration), it is difficult to expect sensors to produce high 

precision measurement values constantly. Once they are 

contaminated by high concentrations of such pollutants, 

sensors continue to produce incorrect measurement values 

until they are cleaned and calibrated again. However, such 

sensor contamination is, unfortunately, often unavoidable 

because sensors are always exposed to air pollutants.

Second, the effective real time IAQ monitoring crucial for 

the real time prediction depends on a number of very 

expensive IAQ sensors and high quality maintenance work 

on those sensors. In subways, indoor air occupies a number 

of large spaces such as platforms and tunnels and a single 

point IAQ measurement cannot represent the IAQs of all the 

spaces. For this reason, the construction and operation of an 

effective real time IAQ monitoring system requires both a 

large amount of investment and a substantial amount of 

maintenance work.

Finally, when raw datasets directly from sensors contain 

lots of incorrect data, the development of prediction models 

generally depends on both a large amount of data 

preprocessing and sophisticated optimization in order to 

increate prediction performances. Although they may 

improve prediction performances against both training and 

test datasets, such preprocessing and optimization efforts 

may also increase the risk of overfitting significantly where 

such efforts make prediction models too customized for the 

training datasets but unsuitable for a variety of new data 

from real world environments. 

In order to address such challenges, we propose a 

practical approach to the development of prediction models 

for subways as follows:

Single pollutant-based prediction. PM10 is used as the only 

indicator for the overall IAQ management. In other words, 

only one type of an IAQ sensor is used for the IAQ 

monitoring. This single pollutant-based approach is 

intentionally taken for three reasons. First, PM10 is 

considered to be the most imminent threat. Second, the 

concentration levels of such air pollutants as PM10, CO, 

CO2, SO2, and NO2 tend to be positively co-related in most 

cases [4]. That is, if the concentration of PM10 is higher, 

then it is very likely that the concentrations of the other 

pollutants are also higher. Finally, IAQ sensors are usually 

costly and require frequent and intensive maintenance. 

Therefore, the monitoring of a fewer pollutants at run 

time usually cause much less development costs and 

maintenance overheads.

One-hour data based prediction. For the fast system 

initialization or failure recovery, the data (in fact, 120 

measurements) collected only during the last one hour is 

used for each prediction. Although the use of more data 

during a longer period of time may improve prediction 

performances, such prediction models require longer time 

for the system initialization and recovery from various 

failures.

Hourly prediction on three representative values. Three 

statistical representative values computed from 120 

measurements during each hour (i.e., with sensor sampling 

at each 30 seconds) are used to represent the hour's PM10 

concentration: the hourly maximum, average, and minimum 

values. In other research work on IAQ, only average values 

are usually used [24-31]. The motivation for three 
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representative values is twofold. First, those three values as 

the input variables are more representative. Second, these 

representative values as the output variables (i.e., prediction 

results) allow more variety of ventilation control and other 

IAQ management. For example, the hourly maximum 

prediction can be used when more priority is on IAQ in 

ventilation control, but the hourly minimum prediction 

when more priority is on efficient energy consumption.

3. Theory

3.1 Multiple Linear Regression

Multiple linear regression (MLR) is one of the statistical 

techniques to minimize the residual sum of squared errors 

between the measured and predicted values [32]. MLR has 

been used for predicting PM10 concentrations in ambient 

air [33]. Recently, MLR has also been used for PM10 in 

subways [24, 30, 31]. The equation for the general MLR is:

   ⋯

where y, xi R, and βi denote the output variable, the i-th 

variable of the input vector X Rn+1, and the i-th regression 

coefficient in the model, respectively. The linear regression 

model of a system with one output is built by optimizing 

the function:

min 
 



 


where Xk Rn+1, yk R, and β Rn+1 are the k-th input 

vector for the model, the k-th measured value, and the 

vector of the weighting coefficients for n= the number of 

features in Xk and N=the number of data samples.

3.2 Artificial Neural Network

An artificial neural network (ANN) basically consists of three 

types of node (or, neuron) layers: a single input layer, multiple 

hidden layers and a single output layer. Each node of each 

layer can be connected to those of preceding and succeeding 

layers, but not to those of the same layer. Such links between 

nodes have modifiable connection weights. In addition, each 

node of every layer except the input layer is connected to a 

single bias node of its preceding layer. The numbers of the 

layers and the nodes of each layer need to be optimized 

[34-36].

In this paper, the ANN with a single hidden layer is used. 

Fig. 2 presents the structure of a three-layer perceptron 

network consisting of an input layer with NI nodes, a single 

hidden layer with NH nodes, and an output layer with one 

node. The wij  and vj are the connection weights from the i-th 

node of the input layer to the j-th node of the hidden layer 

and from the j-th node of the hidden layer to the output layer 

node, respectively. The initial values for wij  and vj are 

randomly generated in [-1,1] at the beginning. The total input 

signal for the j-th node of the hidden layer is: 

 
  



 

where xi is the i-th element value of the input vector and bj is 

the bias for the j-th node of the hidden layer. Each node of 

the hidden layer emits an output signal through the activation 

function f(uj) that is,

  .

A number of differentiable activation functions can be 

applied to the ANN, but in this paper, the following sigmoid 

function is used:

    .

The input signal for the output node is:

 
 



   

where b is the bias. The node of the output layer uses a linear 

activation function to emit the same output signal as an input 

signal: 

   .

The ANN is trained by a backpropagation algorithm with 

gradient descent and momentum terms that minimize the 

network error function [37, 38]. Refer to [39] for a further 

study of the ANN and the backpropagation algorithm.

그림 2 단일 숨김 계층을 가진 인공신경망 구조

Fig. 2 ANN structure with a single hidden layer
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Mean
Standard

deviation (SD)
Range

Numbers 

of samples

Training 

data
66.02 73.97 0.9-615.02 8004

Test data 50.16 35.38 0-251.11 1776

표   1 학습 데이터셋과 테스트 데이터 셋의 평균, 표준편차, 

범위

Table 1 Means, Standard deviatios and ranges of the training 

and test datasets

Model    

MLR-Avgt  5.13 1.09 -0.070 -0.09

MLR-Maxt 15.27 1.61 0.070  -0.66

MLR-Mint  3.11 0.02 -0.006   0.89

표    2 3가지 다중회귀분석 모델에 대한 회귀계수

Table 2 Regression coefficients for three MLR models  

4. Materials and Methods

4.1 Data Sampling, Cleansing, and Preprocessing

The datasets used for the development of prediction models in 

this paper were collected at subway stations in Seoul from 2008 

to 2012. These stations are anonymous because of their 

administration policy. The project to collect those datasets was a 

joint research effort by the research teams from Konkuk 

University, Kyeong Hee University, University of Seoul, and some 

industrial companies. The concentration of PM10 was measured by 

TMS (Tele-Monitoring System) every 30 seconds and so 120 

measurements were collected during each hour. In fact, the 

research team at Kyeong Hee University has been carrying out a 

number of IAQ studies on these datasets [24-31]. For this paper, 

the hourly maximum, average, and minimum values were computed 

from the raw data collected between Jan. 2011 and Oct. 2012.

For various reasons such as contamination, IAQ sensors 

sometimes fail to operate correctly. Data from such faulty sensors 

is very likely to be incorrect and such incorrect data should be 

excluded from analyses. Two simple data validation techniques 

were used to discard incorrect data. First, those measured values 

of PM10 that were greater than 1,000 μgm-3 were assumed to be 

from faulty sensors and therefore removed. Second, sensors that 

continued to generate zero values during more than two hours 

were assumed to be faulty. The data values from those sensors 

during such periods of time were deleted. 

As a result, the dataset of this study consisted of 9,780 

records. The dataset was divided into the training and test 

datasets. The 8,004 observations between 1/1/2011 and 4/22/2012 

are used to train prediction models: the training dataset. The 

remaining 1,776 observations between 4/23/2012 and 10/15/2012 

were used to evaluate the performances of prediction models: the 

test dataset. Table 1 shows some basic statistical analyses of the 

training and test datasets.

4.2 The proposed method

4.2.1 The design of prediction models

In this paper, we develop three PM10 prediction models 

designed as follows:

Every model uses three variables as the input vector: the 

hourly maximum, average, and minimum of PM10 

concentrations (in fact, 120 data samples) from time t-1 to 

time t. These input variables are represented to be Maxt-1, 

Avgt-1 and Mint-1, respectively. That is, only the PM10 

concentrations during the last one hour are used for 

prediction. 

We design three 1-hour-ahead prediction models that 

predict the hourly maximum, average, and minimum of 

PM10 concentrations from time t to time t+1, respectively. 

That is, each prediction model predicts one of three 

statistical representatives of the PM10 concentrations 

during the next one hour. The output variables from three 

prediction models are represented as Maxt, Avgt and Mint, 

respectively. 

However, all of these output variables are simply denoted 

as the common variable PM10(t) in model equations unless 

it is required to distinguish these output variables 

explicitly. Therefore, a single model equation including the 

variable PM10(t), in fact, represents a number of prediction 

models.

Finally, the MLR and ANN modeling techniques are 

separately applied to implement the three prediction 

models so far explained. Therefore, the total six prediction 

models (i.e., three MLR models and three ANN models) are 

presented in this paper. Hereafter, three MLR models are 

represented simply as MLR-Maxt, MLR-Mint, MLR-Avgt 

and three ANN models as ANN-Maxt, ANN-Mint, 

ANN-Avgt.

4.2.2 Multiple Linear Regression Models

The regression coefficients for the following MLR 

equation are computed:

            .

As explained in Section 4.2.1, this equation, in fact, 

represents three models. Table 2 shows the regression 

coefficients of each prediction model computed from the 

training dataset.
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4.2.3 Artificial Neural Network Models

In this study, the ANN models are designed as a 

feed-forward network with a single hidden layer. As 

explained in Section 3.2, they use the sigmoid activation 

function in the hidden layer and the linear activation 

function in the output node. A single hidden layer is used 

according to Bishop's study [40] to indicate that multiple 

hidden layers do not improve model performances 

significantly in most cases. Fig. 3 shows the structure of 

the ANN models that has one input layer with three input 

variables and one additional node accounting for bias, one 

hidden layer with one additional bias node, and one output 

variable of the output layer.

그림 3 PM10 예측에 대한 인공신경망 모델의 구조

Fig. 3 Structure of the ANN Models for the PM10 prediction

Model Hidden Nodes Learning Rate Best MSE

ANN-Avgt 25 0.25 0.038

ANN-Maxt 25 0.25 0.610

ANN-Mint 22 0.35 0.063

표    3 인공신경망 모델들의 파라미터

Table 3 Parameters of ANN models  

The ANN models are built as follows. All the model 

weights are randomly initialized in [-1,1] at the beginning. 

The set of parameters for building the ANN models include 

the learning rate, the number of nodes in the single hidden 

layer, and the maximum number of training epochs [41]. 

The performances of the ANN models are evaluated and 

compared for the numbers of nodes in the hidden layer 

from 5 to 25 and for the learning rates from 0.01 to 1.0 in 

the increment of 0.05. The performance is evaluated by the 

mean square error (MSE) between the model output and the 

measured data. Table 3 shows the values for the parameters 

when each ANN model shows the best performance.

Generalization is crucial for prediction models in order to 

avoid the over-fitting problem that a model is too 

dependent on its training data [42]. For this purpose, the 

early stopping technique is employed. The training dataset 

is randomly split into two sets. 80% of the training dataset 

is used for model training. The remaining 20% of the 

training dataset (called the validation dataset) is applied to 

model testing. The training process is stopped when the 

network starts to over-fit the data, that is, the error value 

(i.e., MSE) begins to increase for the validation set, again.

4.3 Performance Evaluation

The performance evaluation of prediction models employs 

two techniques: the root mean square error (RMSE) and 

correlation coefficient (R). RMSE shows residual errors 

between the measured and predicted values. R indicates the 

strength and the direction of a linear relationship between 

measured and predicted values. These are defined as: 

      RMSE=


n

i  
n
Pi Oi  

      R=









 



  



  



  



  

where  
  , and n denote are a measured value, a 

predicted value, the average of all the measured values, the 

average of all the predicted values, and the number of all 

the data samples, respectively.

5. Result and Discussion

With respect to R and RMSE, Table 4 shows the 

performance comparison of all the six 1-hour-ahead 

prediction models (MLR-Maxt, MLR-Mint, MLR-Avgt, ANN- 

Maxt, ANN-Mint, ANN-Avgt). First, both MLR and ANN 

models show good performances between 0.76 and 0.88 with 

respect to R between the measured and predicted values, 

although the MLR models perform a little better than the 

ANN models for the prediction of the hourly average and 

minimum values. That is, all the models have strong linear 

relationships between the measured and predicted data 

values.
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표    4 Mean, SD, RMSE, R에 관련한 성능평가 결과

Table 4 Performance evaluation results with respect to Mean, 

SD, root mean square error (RMSE), and correlation 

coefficients (R). 

Model Mean SD RMSE R

MLR-Avgt  51.20   32.80 16.10 0.88

MLR-Maxt  77.58   42.16 32.33 0.76

MLR-Mint  36.65   26.77  12.96 0.89

ANN-Avgt  54.38   56.16  31.68 0.86

ANN-Maxt  82.20  110.86  80.02 0.76

ANN-Mint  52.35   47.21  32.05 0.84

However, the MLR models show better performances than 

the ANN models in terms of RMSE between the measured 

and predicted values. That is, the MLR models have much 

less prediction errors than the ANN models. In fact, the 

mean of the predicted dataset from MLR models (e.g., 51.2 

for MLR-Avgt) is closer to that of the test dataset (i.e., 

50.16) than that of the predicted dataset from ANN models 

(i.e., 54.38 for ANN-Avgt). This means that both the MLR 

and ANN models have almost the same linearity between 

the measured and predicted values, but in the MLR models, 

actual predicted values are closer to measured values. For 

MLR-Avgt and ANN-Avgt, Fig. 4 shows and compares both 

the measured and predicted values, respectively.

5. Related Work

There have recently been a number of studies on IAQ in 

subways, but a limited amount of research work on the IAQ 

prediction for real time ventilation control [1, 2, 3, 23-31]. 

Among them, a research team at Kyung Hee University has 

been most actively and comprehensively carrying out various 

analysis and model development studies on IAQ in subways 

for the last few years [24-31]. In [25-29], they presented 

statistical IAQ models for monitoring, analyses and 

diagnoses, but not for prediction and control. In [30], they 

developed two multivariate daily prediction models for PM10 

and PM2.5 that use multiple air pollutants as input variables. 

One model was based on Multiple Linear Regression (MLR) 

and another model on Artificial Neural Networks (ANN). 

Their performances were compared and the MLR model 

outperformed the ANN model. More recently, they developed 

hourly prediction models (based on MLR) for ventilation 

control [31]. In this work, they also studied both energy 

consumption issues and the effects of ambient air quality 

on IAQ. In addition, they also looked into how to optimize 

the control of the ventilation systems.

그림 4 1시간 평균 예측에 대한 측정값과 예측값 비교. 

Fig. 4 Comparison between the measured and predicted 

values for the hourly average prediction.

There are also other research efforts to study IAQ in 

subways. In [4], the correlations between multiple air 

pollutants were studied and the concentration levels of such 

air pollutants as PM10, CO, CO2, SO2, and NO2 were shown 

to be positively co-related in most cases. In [1, 2, 23], the 

IAQ of subways in Prague, Hong Kong, and Los Angeles 

was studied, respectively. Their studies ware aimed only at 

monitoring and analyses.

As opposed to our research work in this paper explicitly 

aimed only at hourly prediction for intelligent, real time 

management of IAQ in subways, those other research efforts 

except [31] were aimed at only monitoring or daily 
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prediction and therefore, in practice, inapplicable to real 

time ventilation control. In [31], hourly prediction models 

for PM10 and PM2.5 were studied. However, those models 

required monitoring multiple air pollutants (i.e., more 

runtime maintenance overheads).

6. Conclusion

In large building and underground facilities such as 

subways, poor IAQ can cause seriously harmful effects on 

human health. The intelligent, real time IAQ (Indoor Air 

Quality) management where IAQ is monitored, predicted and 

controlled in a real time manner is very important. However, 

there has been a very limited amount of research work on 

the IAQ prediction for the real time management of IAQ in 

subways because such research requires a substantial amount 

of IAQ monitoring data and the monitoring of IAQ is still 

very challenging.

In this paper, we first raised challenges for the 

development of IAQ prediction models in subways and 

proposed a model design approach intended to address such 

challenges effectively. The challenges include the reliability of 

IAQ sensors, the construction and operation of IAQ monitoring 

systems, and the risk of overfitting. With those challenges, we 

explained how conventional model development approaches 

could be inefficient. The proposed design approach aims at 

the effective applicability of prediction models in real world 

environments. 

Second, we presented three prediction models for PM10 

whose designs are based on the model design approach. 

Finally, we evaluated their performances. The three prediction 

models were implemented by both Multiple Linear Regression 

(MLR) and Artificial Neural Networks (ANN), respectively. As 

a result, the total six models were developed and their 

performances were compared with respect to both RMSE 

(Root Mean Square Error) and R (correlation coefficient). 

Overall, the MLR models outperformed the corresponding 

ANN models. That is, the MLR modeling method was shown 

to be more effective for the prediction of PM10 than the ANN 

method. 

In the design of these multiple hourly prediction models, 

we intended such prediction models to be easily integrated 

into ICT (Information and Communications Technology) 

systems for real time monitoring and control [14, 15, 20-22]. 

Because of such motivations, the design of these prediction 

models are explicitly intended to reduce runtime system 

operation and maintenance overheads.
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