• Title/Summary/Keyword: time integration scheme

Search Result 311, Processing Time 0.027 seconds

A Dynamic-explicit Finite Element Analysis for Hydro-forming Process (Hydro-forming 공정을 위한 동적-외연적 유한요소해석)

  • Jung, D.W.;Hwang, J.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.23-29
    • /
    • 2004
  • In this paper, a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of Hydro-forming processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Hydro-forming process for auto-body panel forming is analyzed by using dynamic-explicit finite element method. Further, the simulated results of the Hydro-forming processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

A Study of Auto-body Panel Correction of Forming Analysis that Use Dynamic-extensive Finite Element Method (동적-외연적 유한요소법을 이용한 차체 판넬 성형해석에 관한 연구)

  • Jung Dong Won;Hwang Jae Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.115-126
    • /
    • 2004
  • In the present work a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Analyzed auto-body panel stomping process correction of forming using software called Dynaform using dynamic extensive method. Further, the simulated results for the auto-body panel stamping processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

A Study of Forming Analysis by using Dynamic-explicit Finite Element Method in Can-container Production Process of Multi-Stage Assembly (Multi-Stage 조립품인 캔-용기 생산 공정에서 동적-외연적 유한요소법을 이용한 성형해석에 관한 연구)

  • Jung, Dong-Won;Hwang, Jae-Sin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.58-63
    • /
    • 2004
  • In the present work a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of multi-stage stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation Multi-Stage stamping is analyzed by using dynamic-explicit finite element method. Further, the simulated results for the panel stamping processes are shown and discussed. Its application is being increased especially in the stamping industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

A Study of Forming Analysis by using Dynamic-Explicit Finite Element Method in Auto-Body Stamping (차체 판넬 스템핑 공정에서 동적-외연적 유한요소법을 이용한 성형해석에 관한 연구)

  • Jung, Dong-Won;Hwang, Jae-Sin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.63-72
    • /
    • 2004
  • In this paper, a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Auto-body panel forming is analyzed by using dynamic-explicit finite element method. Further, the simulated results of the auto-body panel stamping processes are shown and discussed. Its application is being increased especially in the stamping industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

Proper Numerical Scheme to Solve the Flow Past a Circular Cylinder with Time and Grid Size Variations (시간과 격자 크기 변화에 따른 원주후류해석의 경제적 수치기법)

  • Maeng, Joo-Sung;Kim, Yong-Dae;Choi, IL-Kon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.652-659
    • /
    • 2000
  • The purpose of this study is to present the most effective numerical scheme to calculate the unsteady flows. In order to calculate the flow quantities of flow past a circular cylinder, Three-time level and five convective schemes are applied to unsteady and convective terms, respectively. The values obtained are compared with those from the existing experimental and numerical studies. At Reynolds numbers up to 160, time intervals can be expanded 10 times of Implicit Euler scheme using Three-time level method, and it is found that QUICK and CUI schemes work much stable than others even if less grid density conditions. The combination of Three-time level and QUICK scheme gives high resolutions for laminar unsteady problems with PC level.

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Logic circuit design for high-speed computing of dynamic response in real-time hybrid simulation using FPGA-based system

  • Igarashi, Akira
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1131-1150
    • /
    • 2014
  • One of the issues in extending the range of applicable problems of real-time hybrid simulation is the computation speed of the simulator when large-scale computational models with a large number of DOF are used. In this study, functionality of real-time dynamic simulation of MDOF systems is achieved by creating a logic circuit that performs the step-by-step numerical time integration of the equations of motion of the system. The designed logic circuit can be implemented to an FPGA-based system; FPGA (Field Programmable Gate Array) allows large-scale parallel computing by implementing a number of arithmetic operators within the device. The operator splitting method is used as the numerical time integration scheme. The logic circuit consists of blocks of circuits that perform numerical arithmetic operations that appear in the integration scheme, including addition and multiplication of floating-point numbers, registers to store the intermediate data, and data busses connecting these elements to transmit various information including the floating-point numerical data among them. Case study on several types of linear and nonlinear MDOF system models shows that use of resource sharing in logic synthesis is crucial for effective application of FPGA to real-time dynamic simulation of structural response with time step interval of 1 ms.

Sensitivity Analysis of the Explicit Elasto-plastic Finite Element Method and Application to the Quasi-static Deformation (외연적 탄소성 유한요소해석에서의 민감도 해석과 준정적 변형에의 응용)

  • Kim, Se-Ho;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.402-407
    • /
    • 2001
  • Sensitivity analysis scheme is developed in the elasto-plastic finite element method with explicit time integration using direct differentiation method. The direct differentiation is concerned with the time integration, constitutive relation, shell element with reduced integration and the contact scheme. Sensitivity analysis results are mainly examined with the highly nonlinear and quasi-static problem with the complicated contact condition. The result shows stable sensitivity especially in the sheet metal forming analysis.

  • PDF

Highly accurate family of time integration method

  • Rezaiee-Pajand, Mohammad;Esfehani, S.A.H.;Karimi-Rad, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.603-616
    • /
    • 2018
  • In this study, the acceleration vector in each time step is assumed to be a mth order time polynomial. By using the initial conditions, satisfying the equation of motion at both ends of the time step and minimizing the square of the residual vector, the m+3 unknown coefficients are determined. The order of accuracy for this approach is m+1, and it has a very low dispersion error. Moreover, the period error of the new technique is almost zero, and it is considerably smaller than the members of the Newmark method. The proposed scheme has an appropriate domain of stability, which is greater than that of the central difference and linear acceleration techniques. The numerical tests highlight the improved performance of the new algorithm over the fourth-order Runge-Kutta, central difference, linear and average acceleration methods.

Semi-Lagrangian flow analysis of Viscoelastic fluid using Objective Time Integration (Semi Lagrangian 방법과 Objective Time Integration을 이용한 점탄성 유동 해석)

  • Kang, S.Y.;Kim, S.M.;Lee, W.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.99-104
    • /
    • 2006
  • A semi-Lagrangian finite element scheme with objective time stepping algorithm for solving viscoelastic flow problem is presented. The convection terms in the momentum and constitutive equations are treated using a quasi-monotone semi-Lagrangian scheme, in which characteristic feet on a regular grid are traced backwards over a single time-step. Concerned with the generalized midpoint rule type of algorithms formulated to exactly preserve objectivity, we use the geometric transformation such as pull-back, push-forward operation. The method is applied to the 4:1 planar contraction problem for an Oldroyd B fluid for both creeping and inertial flow conditions.

  • PDF