Browse > Article
http://dx.doi.org/10.12989/sem.2018.67.6.603

Highly accurate family of time integration method  

Rezaiee-Pajand, Mohammad (Department of Civil Engineering, Ferdowsi university of Mashhad)
Esfehani, S.A.H. (Department of Civil Engineering, Ferdowsi university of Mashhad)
Karimi-Rad, Mahdi (Department of Civil Engineering, Ferdowsi university of Mashhad)
Publication Information
Structural Engineering and Mechanics / v.67, no.6, 2018 , pp. 603-616 More about this Journal
Abstract
In this study, the acceleration vector in each time step is assumed to be a mth order time polynomial. By using the initial conditions, satisfying the equation of motion at both ends of the time step and minimizing the square of the residual vector, the m+3 unknown coefficients are determined. The order of accuracy for this approach is m+1, and it has a very low dispersion error. Moreover, the period error of the new technique is almost zero, and it is considerably smaller than the members of the Newmark method. The proposed scheme has an appropriate domain of stability, which is greater than that of the central difference and linear acceleration techniques. The numerical tests highlight the improved performance of the new algorithm over the fourth-order Runge-Kutta, central difference, linear and average acceleration methods.
Keywords
high accuracy; time integration scheme; nonlinear analysis; period error; stability;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Rezaiee-Pajand, M. and Hashemian, M. (2017), "Modified differential transformation method for solving nonlinear dynamic problems", Appl. Math. Modell., 47, 76-95.   DOI
2 Rezaiee-Pajand, M. and Karimi-Rad, M. (2015), "More accurate and stable time integration scheme", Eng. Comput., 31(4), 791-812.   DOI
3 Rezaiee-Pajand, M. and Karimi-Rad, M. (2016), "A new explicit time integration scheme for nonlinear dynamic analysis", Int. J. Struct. Stab. Dyn., 16(9), 1550054.   DOI
4 Rezaiee-Pajand, M. and Karimi-Rad, M. (2017), "A family of second-order fully explicit time integration schemes", Comput. Appl. Math.
5 Rezaiee-Pajand, M. and Karimi-Rad, M. (2017), "An accurate predictor-corrector time integration method for structural dynamics", Int. J. Steel Struct., 17(3), 1033-1047.   DOI
6 Chen, C., Ricles, J.M., Marullo, T.M. and Mercan, O. (2009), "Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm", Earthq. Eng. Struct. Dyn., 38(1), 23-44.   DOI
7 Chopra, A.K. (2001), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice-Hall.
8 Chung, J. and Lee, J.M. (1994), "A new family of explicit time integration methods for linear and non-linear structural dynamics", Int. J. Numer. Meth. Eng., 37(23), 3961-3976.   DOI
9 Dokainish, M.A. and Subbaraj, K. (1989), "A survey of direct time-integration methods in computational structural dynamics-I. Explicit methods", Comput. Struct., 32(6), 1371-1386.   DOI
10 Felippa, C.A. and Park, K.C. (1979), "Direct time integration methods in nonlinear structural dynamics", Comput. Meth. Appl. Mech. Eng., 17, 277-313.
11 Fung, T.C. (1999), "Weighting parameters for unconditionally stable higher-order accurate time step integration algorithms. Part 2-second-order equations", Int. J. Numer. Meth. Eng., 45(8), 971-1006.   DOI
12 Saka, M.P. (1990), "Optimum design of pin-jointed steel structures with practical applications", J. Struct. Eng., 116(10), 2599-2620.   DOI
13 Rezaiee-Pajand, M. and Sarafrazi, S.R. (2010), "A mixed and multi-step higher-order implicit time integration family", J. Mech. Eng. Sci., 224(10), 2097-2108.   DOI
14 Rezaiee-Pajand, M., Hashemian, M. and Bohluly, A. (2017), "A novel time integration formulation for nonlinear dynamic analysis", Aerosp. Sci. Technol., 69, 625-635.   DOI
15 Rio, G., Soive, A. and Grolleau, V. (2005), "Comparative study of numerical explicit time integration algorithms", Adv. Eng. Softw., 36(4), 252-265.   DOI
16 Rezaiee-Pajand, M. and Hashemian, M. (2016), "Time integration method based on discrete transfer function", Int. J. Struct. Stab. Dyn., 16(5), 1550009.   DOI
17 Golley, B.W. (1996), "A time-stepping procedure for structural dynamics using gauss point collocation", Int. J. Numer. Meth. Eng., 39(23), 3985-3998.   DOI
18 Fung, T.C. (2003), "Numerical dissipation in time-step integration algorithms for structural dynamic analysis", Progr. Struct. Eng. Mater., 5(3), 167-180.   DOI
19 Ghassemieh, M., Gholampour, A.A. and Massah, S.R. (2016), "Application of weight functions in nonlinear analysis of structural dynamics problems", Int. J. Comput. Meth., 13(1), 1650005.   DOI
20 Chen, C. and Ricles, J.M. (2008), "Development of direct integration algorithms for structural dynamics using discrete control theory", J. Eng. Mech., 134(8), 676-683.   DOI
21 Verma, M., Rajasankar, J. and Iyer, N.R. (2015), "Numerical assessment of step-by-step integration methods in the paradigm of real-time hybrid testing", Earthq. Struct., 8(6), 1325-1348.   DOI
22 Wu, B., Xu, G., Wang, Q. and Williams, M.S. (2006), "Operatorsplitting method for real-time substructure testing", Earthq. Eng. Struct. Dyn., 35(3), 293-314.   DOI
23 Yin, S.H. (2013), "A new explicit time integration method for structural dynamics", Int. J. Struct. Stab. Dyn., 13(3), 1250068.   DOI
24 Zhai, W.M. (1996), "Two simple fast integration methods for large-scale dynamic problems in engineering", Int. J. Numer. Meth. Eng., 39(24), 4199-4214.   DOI
25 Zheng, M., Yuan, Z., Tong, Q., Zhang, G. and Zhu, W. (2017), "A novel unconditionally stable explicit integration method for finite element method", Vis. Comput., 1-13.
26 Shishvan, S.S., Noorzad, A. and Ansari, A. (2009), "A time integration algorithm for linear transient analysis based on the reproducing kernel method", Comput. Meth. Appl. Mech. Eng., 198(41), 3361-3377.   DOI
27 Subbaraj, K. and Dokainish, M.A. (1989), "A survey of direct time-integration methods in computational structural dynamics-II. Implicit methods", Comput. Struct., 32(6), 1387-1401.   DOI
28 Tang, Y. and Lou, M. (2017), " New unconditionally stable explicit integration algorithm for real-time hybrid testing", J. Eng. Mech., 143(7), 04017029.   DOI
29 Torkamani, M.A. and Shieh, J.H. (2011), "Higher-order stiffness matrices in nonlinear finite element analysis of plane truss structures", Eng. Struct., 33(12), 3516-3526.   DOI
30 Turyn, L. (2013), Advanced Engineering Mathematics, CRC Press.
31 Wang, M. and Au, F.T.K. (2008), "Precise integration methods based on the Chebyshev polynomial of the first kind", Earthq. Eng. Eng. Vibr., 7(2), 207-216.   DOI
32 Wang, M.F. and Au, F.T.K. (2009), "On the precise integration methods based on Pade approximations", Comput. Struct., 87(5), 380-390.   DOI
33 Wen, W.B., Jian, K.L. and Luo, S.M. (2014), "An explicit time integration method for structural dynamics using septuple Bspline functions", Int. J. Numer. Meth. Eng., 97(9), 629-657.   DOI
34 Wen, W.B., Wei, K., Lei, H.S., Duan, S.Y. and Fang, D.N. (2017), "A novel sub-step composite implicit time integration scheme for structural dynamics", Comput. Struct., 182, 176-186.   DOI
35 Paz, M. and Leigh, W. (1985), Structural Dynamics.
36 Mansur, W.J., Carrer, J.A.M., Ferreira, W.G., De Gouveia, A.C. and Venancio-Filho, F. (2000), "Time-segmented frequencydomain analysis for non-linear multi-degree-of-freedom structural systems", J. Sound Vibr., 237(3), 457-475.   DOI
37 Mohammadzadeh, S., Ghassemieh, M. and Park, Y. (2017), "Extended implicit integration process by utilizing nonlinear dynamics in finite element", Struct. Eng. Mech., 64(4), 495-504.   DOI
38 Mohammadzadeh, S., Ghassemieh, M. and Park, Y. (2017), "Structure-dependent improved Wilson-$\theta$ method with higher order of accuracy and controllable amplitude decay", Appl. Math. Modell., 52, 417-436.   DOI
39 Nguyen, T.L., Sansour, C. and Hjiaj, M. (2017), "Long-term stable time integration scheme for dynamic analysis of planar geometrically exact Timoshenko beams", J. Sound Vibr., 396, 144-171.   DOI
40 Park, K.C. (1977), "Practical aspects of numerical time integration", Comput. Struct., 7(3), 343-353.   DOI
41 Pezeshk, S. and Camp, C.V. (1995), "An explicit time-integration method for damped structural systems", Struct. Eng. Mech., 3(2), 145-162.   DOI
42 Razavi, S.H., Abolmaali, A. and Ghassemieh, M. (2007), "A weighted residual parabolic acceleration time integration method for problems in structural dynamics", Comput. Meth. Appl. Math., 7(3), 227-238.
43 Rezaiee-Pajand, M. and Alamatian, J. (2008), "Numerical time integration for dynamic analysis using a new higher order predictor-corrector method", Eng. Comput., 25(6), 541-568.   DOI
44 Rezaiee-Pajand, M. and Estiri, H. (2016), "Computing the structural buckling limit load by using dynamic relaxation method", Int. J. Non-Lin. Mech., 81, 245-260.   DOI
45 Bathe, K.J. and Baig, M.M.I. (2005), "On a composite implicit time integration procedure for nonlinear dynamics", Comput. Struct., 83(31), A2513-2524.   DOI
46 Alamatian, J. (2013), "New implicit higher order time integration for dynamic analysis", Struct. Eng. Mech., 48(5), 711-736.   DOI
47 Bathe, K.J. (2006), Finite Element Procedures, Klaus-Jurgen Bathe.
48 Bathe, K.J. (2007), "Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme", Comput. Struct., 85(7), 437-445.   DOI
49 Bursi, O.S., Gonzalez-Buelga, A., Vulcan, L., Neild, S.A. and Wagg, D.J. (2008), "Novel coupling Rosenbrock-based algorithms for real-time dynamic substructure testing", Earthq. Eng. Struct. Dyn., 37(3), 339-360.   DOI
50 Chang, S.Y. (2004), "Unconditional stability for explicit pseudodynamic testing", Struct. Eng. Mech., 18(4), 411-428.   DOI
51 Klarmann, S. and Wagner, W. (2015), "Enhanced studies on a composite time integration scheme in linear and non-linear dynamics", Comput. Mech., 55(3), 455-468.   DOI
52 Hahn, G.D. (1991), "A modified Euler method for dynamic analyses", Int. J. Numer. Meth. Eng., 32(5), 943-955.   DOI
53 Hilber, H.M., Hughes, T.J. and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct. Dyn., 5(3), 283-292.   DOI
54 Hulbert, G.M. and Chung, J. (1996), "Explicit time integration algorithms for structural dynamics with optimal numerical dissipation", Comput. Meth. Appl. Mech. Eng. 137(2), 175-188.   DOI
55 Kolay, C. and Ricles, J.M. (2014), "Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation", Earthq. Eng. Struct. Dyn., 43(9), 1361-1380.   DOI
56 Kuo, S.R. and Yau, J.D. (2011), "A fast and accurate step-by-step solution procedure for direct integration", Int. J. Struct. Stab. Dyn., 11(3), 473-493.   DOI
57 Chang, S.Y. (2014), "A family of noniterative integration methods with desired numerical dissipation", Int. J. Numer. Meth. Eng., 100(1), 62-86.   DOI
58 Chang, S.Y. (2007), "Improved explicit method for structural dynamics", J. Eng. Mech., 133(7), 748-760.   DOI
59 Chang, S.Y. (2009), "An explicit method with improved stability property", Int. J. Numer. Meth. Eng., 77(8), 1100-1120.   DOI
60 Chang, S.Y. (2010), "A new family of explicit methods for linear structural dynamics", Comput. Struct., 88(11), 755-772.   DOI
61 Chang, S.Y. (2014), "Numerical dissipation for explicit, unconditionally stable time integration methods", Earthq. Struct., 7(2), 159-178.   DOI
62 Chang, S.Y. (2015), "Comparisons of structure-dependent explicit methods for time integration", Int. J. Struct. Stab. Dyn., 15(3), 1450055.   DOI
63 Chang, S.Y. (2016), "A virtual parameter to improve stability properties for an integration method", Eartq. Struct., 11(2), 297-313.   DOI
64 Chang, S.Y. (2018), "Performances of non-dissipative structuredependent integration methods", Struct. Eng. Mech., 65(1), 91-98.   DOI
65 Chang, S.Y. and Liao, W.I. (2005), "An unconditionally stable explicit method for structural dynamics", J. Earthq. Eng., 9(3), 349-370.   DOI
66 Graham, A. (1982), Kronecker Products and Matrix Calculus: With Applications, John Wiley and Sons, Inc.
67 Kuo, S.R., Yau, J.D. and Yang, Y.B. (2012), "A robust timeintegration algorithm for solving nonlinear dynamic problems with large rotations and displacements", Int. J. Struct. Stab. Dyn., 12(6), 1250051.   DOI
68 Levine, W.S. (1996), The Control Handbook, CRC Press.
69 Liu, T., Li, Q. and Zhao, C. (2013), "An efficient time-integration method for nonlinear dynamic analysis of solids and structures", Sci. Chin.: Phys., Mechan Astron, 56, 798-804.   DOI
70 Chang, S.Y., Wu, T.H. and Tran, N.C. (2015), "A family of dissipative structure-dependent integration methods", Struct. Eng. Mech., 55(4), 815-837.   DOI
71 Chang, S.Y., Wu, T.H., Tran, N.C. and Yang, Y.S. (2017), "Applications of a family of unconditionally stable, dissipative, explicit methods to pseudodynamic tests", Exper. Techniq., 41(1), 19-36.   DOI