• Title/Summary/Keyword: time domain scaling

Search Result 52, Processing Time 0.025 seconds

Novel Peak-to-Average Power Ratio Reduction Methods for OFDM/OQAM Systems

  • Sandeep, Vangala;Anuradha, Sundru
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1124-1134
    • /
    • 2016
  • The tone reservation method is one of the most effective pre-distortion methods for peak-to-average power ratio reduction in orthogonal frequency division multiplexing (OFDM) systems. Its direct application to OFDM systems with offset quadrature amplitude modulation (OQAM) is, however, not effective. In this paper, two novel TR-based methods are proposed, specifically designed for OFDM/OQAM systems by taking into consideration the overlapping nature of OQAM signals. These two methods have different approaches to the generation of the peak-cancelling signal. The first one (overlapped scaling tone reservation) generates the peak-cancelling signal using a least squares approximation algorithm with possible adjacent symbol overlap; the second one (multi-kernel tone reservation) generates the peak-cancelling signal by using multiple impulse-like time domain kernels. It is shown by simulation that, when used in OFDM/OQAM systems, the proposed methods can provide better performance than the direct application of the existing controlled clipping tone reservation method, and even outperform the multi-block tone reservation method.

A Parametric Study on EOM-based 2D Numerical Wave Generation using OpenFOAM (OpenFOAM을 이용한 EOM 기반 2차원 수치 파 생성에 관한 파라메트릭 연구)

  • Moon, Seong-Ho;Lee, Sungwook;Paik, Kwang-Jun;Kwon, Chang-Seop
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.490-496
    • /
    • 2018
  • The consistency of the initially designed waves in the domain is essential for accurate calculation of the added resistance in waves through CFD. In particular, unwanted reflected waves at domain boundaries can cause incorrect numerical solutions due to the superposition with initially designed waves. Euler Overlay Method(EOM) is one of the methods for reducing wave reflections by adding an additional source term to momentum and phase conservation equations, respectively. In this study, we apply the Euler Overlay Method(EOM) to the open-source CFD library, OpenFOAM(R), to simulate the accurate free-surface waves in the domain and the parametric study is performed for efficient implementation of Euler Overlay Method(EOM). Considering that the damping efficiency depends on the selection of the overlay parameter in the added source terms, the size of overlay zone and the wave steepness, the influences of these factors are tested through the wave elevation measured at constant time intervals in the 2D numerical wave tank. Through this process, guidelines for selection of optimal overlay parameter and overlay zone size that can be applied according to the scaling law are finally presented.

Validation on the Bodywave Magnitude Estimation of the 2017 DPRK's Nuclear Test by Source Scaling (지진원 상대비율 측정법을 이용한 2017년 북한 핵실험의 실체파 규모 검증)

  • Kim, Tae Sung
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.589-593
    • /
    • 2018
  • Democratic Peoples' Republic of Korea (DPRK) conducted the $6^{th}$ underground nuclear test at the Punggye-ri underground nuclear test site on September 27, 2017 12 hours 30 minutes of Korean local time. Comprehensive Nuclear-Test Ban Treaty Organization (CTBTO) under U.N. announced the body wave magnitude of the event was mb 6.1 while U.S. Geological Survey (USGS)'s calculation was mb 6.3. In this study, the differences of the magnitude estimates were investigated and verified. For this purpose, a source scaling between the $5^{th}$ and $6^{th}$ event, which's epicenters are 200 meters apart, was performed using seismic data sets from 30 broadband stations. The relative amplitude variations of the $6^{th}$ event compared to the $5^{th}$ event in the frequency domain was analyzed through the scaling. The increased amount of the bodywave magnitude $m_b$ for the $6^{th}$ event was calculated at 1 Hz, which was compared to those from USGS and CTBTO's calculations.

Time-domain Seismic Waveform Inversion for Anisotropic media (이방성을 고려한 탄성매질에서의 시간영역 파형역산)

  • Lee, Ho-Yong;Min, Dong-Joo;Kwon, Byung-Doo;Yoo, Hai-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.51-56
    • /
    • 2008
  • The waveform inversion for isotropic media has ever been studied since the 1980s, but there has been few studies for anisotropic media. We present a seismic waveform inversion algorithm for 2-D heterogeneous transversely isotropic structures. A cell-based finite difference algorithm for anisotropic media in time domain is adopted. The steepest descent during the non-linear iterative inversion approach is obtained by backpropagating residual errors using a reverse time migration technique. For scaling the gradient of a misfit function, we use the pseudo Hessian matrix which is assumed to neglect the zero-lag auto-correlation terms of impulse responses in the approximate Hessian matrix of the Gauss-Newton method. We demonstrate the use of these waveform inversion algorithm by applying them to a two layer model and the anisotropic Marmousi model data. With numerical examples, we show that it's difficult to converge to the true model when we assumed that anisotropic media are isotropic. Therefore, it is expected that our waveform inversion algorithm for anisotropic media is adequate to interpret real seismic exploration data.

  • PDF

Study on Barkhausen Avalanches in Fe Thin Film (Fe 박막에서의 박하우젠 현상 연구)

  • Lee, Hun-Sung;Ryu, Kwang-Su;Shin, Sung-Chul;Kang, Im-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.5
    • /
    • pp.176-179
    • /
    • 2009
  • We report a direct observation of Barkhausen avalanches in 50-nm Fe film, using a magneto-optical microscope magnetometer, capable of time-resolved domain observation. The time-resolved domain-evolution patterns exhibit that the occurrence of Barkhausen jump is random with respect to interval, size, and location. From the repetitive measurements more than 1000 times, we found that the probability distribution of Barkhausen jump size follows a power-law distribution and the critical exponent reveals the value of 1.14 $\pm$ 0.03.

Simplified approach for symbol error rate analysis of SC-FDMA scheme over Rayleigh fading channel

  • Trivedi, Vinay Kumar;Sinha, Madhusudan Kumar;Kumar, Preetam
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.537-545
    • /
    • 2018
  • In this paper, we present a comprehensive analytical study of the symbol error rate (SER) of single-carrier frequency-division multiple access (SC-FDMA) with zero-forcing frequency domain equalization (ZF-FDE) over a Rayleigh fading channel. SC-FDMA is considered as a potential waveform candidate for fifth-generation (5G) radio access networks (RANs). First, the $N_C$ fold convolution of the noise distribution of an orthogonal frequency-division multiplexing (OFDM) system is computed for each value of the signal-to-noise ratio (SNR) in order to determine the noise distribution of the SC-FDMA system. $N_C$ is the number of subcarriers assigned to a user or the size of the discrete Fourier transform (DFT) precoding. Here, we present a simple alternative method of calculating the SER by simplifying the $N_C$ fold convolution using time and amplitude scaling properties. The effects of the $N_C$ fold convolution and SNR over the computation of the SER of the SC-FDMA system has been separated out. As a result, the proposed approach only requires the computation of the $N_C$ fold convolution once, and it is used for different values of SNR to calculate the SER of SC-FDMA systems.

Study of the Constant Current Fuzzy Control System Design using CRS Algorithm during Inverter DC Resistance Spot Welding Process (인버터 DC 저항점용접 공정에서 CRS 알고리즘을 이용한 정전류 퍼지 제어시스템 설계에 관한 연구)

  • Park, Hyoung-Jin;Park, Pyeong-Won;Yu, Ji-Young;Kim, Dong-Cheol;Kang, Mun-Jin;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.76-83
    • /
    • 2010
  • The purpose of this study is to propose a method to decide near-optimal settings of the constant current fuzzy control parameters using a controlled random search. This method tries to find the near-optimal settings of the constant current fuzzy control parameters through experiments. It has an advantage of being able to carry out searches in the search domain which includes some irregular points. The method suggested in this study was used to determine the fuzzy control parameters by which the desired welding current were formed during inverter DC resistance spot welding. The output variable was the ITAE (integral of time multiplied by the absolute error). This output variable was determined according to the input variables, which are the GE, GDE, and GDU. This study described how to obtained near-optimal welding current condition over a wide search space conducting a relatively small number of experiments.

(Very Low Bitrate Image Compression Coding Based on Fractal) (프랙탈 기반 저전송율 영상 압축 부호화)

  • 곽성근
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.8
    • /
    • pp.1085-1092
    • /
    • 2002
  • Studies on image information processing have been performed since long time ago because in daily life most of information are acquired by the since of sight. Since there should be a lot of data to describe image as a digital form, data compression is required in order to store or transmit digital image. Lately among most of image compression methods adopted on image compression standards, transform coding methods have been primarily used which transforms the correlations between pixels of image on frequency domain before image compression. It is blown that the standard methods using especially DCT features blocking effect which is the major cause of degrading the quality of image at high compression rate. Fractal encoding using quadtree partition is applied after reducing original image, and we are to find a optimal encoding for the number of scaling bit and offset bit.

  • PDF

Scaling Inter-domain Routing System via Path Exploration Aggregation

  • Wang, Xiaoqiang;Zhu, Peidong;Lu, Xicheng;Chen, Kan;Cao, Huayang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.490-508
    • /
    • 2013
  • One of the most important scalability issues facing the current Internet is the rapidly increasing rate of BGP updates (BGP churn), to which route flap and path exploration are the two major contributors. Current countermeasures would either cause severe reachability loss or delay BGP convergence, and are becoming less attractive for the rising concern about routing convergence as the prevalence of Internet-based real time applications. Based on the observation that highly active prefixes usually repeatedly explore very few as-paths during path exploration, we propose a router-level mechanism, Path Exploration Aggregation (PEA), to scale BGP without either causing prefix unreachable or slowing routing convergence. PEA performs aggregation on the transient paths explored by a highly active prefix, and propagates the aggregated path instead to reduce the updates caused by as-path changes. Moreover, in order to avoid the use of unstable routes, PEA purposely prolongs the aggregated path via as-path prepending to make it less preferred in the perspective of downstream routers. With the BGP traces obtained from RouteViews and RIPE-RIS projects, PEA can reduce BGP updates by up to 63.1%, shorten path exploration duration by up to 53.3%, and accelerate the convergence 7.39 seconds on average per routing event.

Extrapolation of wind pressure for low-rise buildings at different scales using few-shot learning

  • Yanmo Weng;Stephanie G. Paal
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.367-377
    • /
    • 2023
  • This study proposes a few-shot learning model for extrapolating the wind pressure of scaled experiments to full-scale measurements. The proposed ML model can use scaled experimental data and a few full-scale tests to accurately predict the remaining full-scale data points (for new specimens). This model focuses on extrapolating the prediction to different scales while existing approaches are not capable of accurately extrapolating from scaled data to full-scale data in the wind engineering domain. Also, the scaling issue observed in wind tunnel tests can be partially resolved via the proposed approach. The proposed model obtained a low mean-squared error and a high coefficient of determination for the mean and standard deviation wind pressure coefficients of the full-scale dataset. A parametric study is carried out to investigate the influence of the number of selected shots. This technique is the first of its kind as it is the first time an ML model has been used in the wind engineering field to deal with extrapolation in wind performance prediction. With the advantages of the few-shot learning model, physical wind tunnel experiments can be reduced to a great extent. The few-shot learning model yields a robust, efficient, and accurate alternative to extrapolating the prediction performance of structures from various model scales to full-scale.