• 제목/요약/키워드: threshold approach

Search Result 511, Processing Time 0.024 seconds

A Study on the Threshold of Avoidance Time in the New Evaluation of Collision Risk

  • Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.619-624
    • /
    • 2003
  • Evaluating the risk of collision quantitatively plays a key role in developing the expert system of navigation and collision avoidance. This study analysed thoroughly how to determine the threshold function related to the avoidance time as described in the new evaluation of collision risk using sech function, and developed the appropriate equation as applicable.

A Bayesian Wavelet Threshold Approach for Image Denoising

  • Ahn, Yun-Kee;Park, Il-Su;Rhee, Sung-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.109-115
    • /
    • 2001
  • Wavelet coefficients are known to have decorrelating properties, since wavelet is orthonormal transformation. but empirically, those wavelet coefficients of images, like edges, are not statistically independent. Jansen and Bultheel(1999) developed the empirical Bayes approach to improve the classical threshold algorithm using local characterization in Markov random field. They consider the clustering of significant wavelet coefficients with uniform distribution. In this paper, we developed wavelet thresholding algorithm using Laplacian distribution which is more realistic model.

  • PDF

Applying Deep Reinforcement Learning to Improve Throughput and Reduce Collision Rate in IEEE 802.11 Networks

  • Ke, Chih-Heng;Astuti, Lia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.334-349
    • /
    • 2022
  • The effectiveness of Wi-Fi networks is greatly influenced by the optimization of contention window (CW) parameters. Unfortunately, the conventional approach employed by IEEE 802.11 wireless networks is not scalable enough to sustain consistent performance for the increasing number of stations. Yet, it is still the default when accessing channels for single-users of 802.11 transmissions. Recently, there has been a spike in attempts to enhance network performance using a machine learning (ML) technique known as reinforcement learning (RL). Its advantage is interacting with the surrounding environment and making decisions based on its own experience. Deep RL (DRL) uses deep neural networks (DNN) to deal with more complex environments (such as continuous state spaces or actions spaces) and to get optimum rewards. As a result, we present a new approach of CW control mechanism, which is termed as contention window threshold (CWThreshold). It uses the DRL principle to define the threshold value and learn optimal settings under various network scenarios. We demonstrate our proposed method, known as a smart exponential-threshold-linear backoff algorithm with a deep Q-learning network (SETL-DQN). The simulation results show that our proposed SETL-DQN algorithm can effectively improve the throughput and reduce the collision rates.

An Estimating Function Approach for Threshold-ARCH Models

  • Kim, Sahm-Yeong;Chong, Tae-Su
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.1
    • /
    • pp.33-40
    • /
    • 2005
  • The estimating function method was proposed by Godambe(1985) for parameter estimation under unknown distributions for errors in the models. Threshold Autoregressive Heteroscedastic (Threshold-ARCH) models have been developed by Zakoian(1994) and Li and Li(1996) for explaining the asymmetric properties in the financial time series data. In this paper, we apply the estimating function method to the Threshold-ARCH model and show that the proposed estimators perform better than the MLE under the heavy-tailed distributions.

  • PDF

Skin Segmentation Using YUV and RGB Color Spaces

  • Al-Tairi, Zaher Hamid;Rahmat, Rahmita Wirza;Saripan, M. Iqbal;Sulaiman, Puteri Suhaiza
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.283-299
    • /
    • 2014
  • Skin detection is used in many applications, such as face recognition, hand tracking, and human-computer interaction. There are many skin color detection algorithms that are used to extract human skin color regions that are based on the thresholding technique since it is simple and fast for computation. The efficiency of each color space depends on its robustness to the change in lighting and the ability to distinguish skin color pixels in images that have a complex background. For more accurate skin detection, we are proposing a new threshold based on RGB and YUV color spaces. The proposed approach starts by converting the RGB color space to the YUV color model. Then it separates the Y channel, which represents the intensity of the color model from the U and V channels to eliminate the effects of luminance. After that the threshold values are selected based on the testing of the boundary of skin colors with the help of the color histogram. Finally, the threshold was applied to the input image to extract skin parts. The detected skin regions were quantitatively compared to the actual skin parts in the input images to measure the accuracy and to compare the results of our threshold to the results of other's thresholds to prove the efficiency of our approach. The results of the experiment show that the proposed threshold is more robust in terms of dealing with the complex background and light conditions than others.

Optimal Bankruptcy with a Continuous Debt Repayment

  • Lim, Byung Hwa
    • Management Science and Financial Engineering
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2016
  • We investigate the optimal consumption and investment problem when a working debtor has an option to file for bankruptcy. By applying the duality approach, the closed-form solutions are obtained for the case of CRRA utility function. The optimal bankruptcy time is determined by the first hitting time when the financial wealth hits the wealth threshold derived from the optimal stopping time problem. Moreover, the numerical results show that the investment increases as the wealth approaches the threshold and the value gain from the bankruptcy option is vanished as wealth increases.

A Fast Ground Segmentation Method for 3D Point Cloud

  • Chu, Phuong;Cho, Seoungjae;Sim, Sungdae;Kwak, Kiho;Cho, Kyungeun
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.491-499
    • /
    • 2017
  • In this study, we proposed a new approach to segment ground and nonground points gained from a 3D laser range sensor. The primary aim of this research was to provide a fast and effective method for ground segmentation. In each frame, we divide the point cloud into small groups. All threshold points and start-ground points in each group are then analyzed. To determine threshold points we depend on three features: gradient, lost threshold points, and abnormalities in the distance between the sensor and a particular threshold point. After a threshold point is determined, a start-ground point is then identified by considering the height difference between two consecutive points. All points from a start-ground point to the next threshold point are ground points. Other points are nonground. This process is then repeated until all points are labelled.

A Study on a New Evaluation of Collision Risk and the Problems Involved

  • Jeong, Tae-Gweon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.146-154
    • /
    • 2004
  • Evaluating the risk of collision quantitatively plays a key role in developing the expert system of navigation and collision avoidance. This study suggested and developed a new approach to the evaluation by using the sech function as an alternative to the existing methods of appraising the collision risk. This study also investigated and built up theoretically how to determine the gradient coefficients in this approach and suggested the appropriate values as much as applicable. Finally this study analyzed thoroughly how to determine the threshold function of avoiding time and developed the appropriate equation.

  • PDF

A Study on decreasing the Number of Multirun in ART Model (ART 모델의 multirun 횟수 감소에 관한 연구)

  • Kim, Mi-Na;Kim, Do-Nyun;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.986-988
    • /
    • 1995
  • The ART(Adaptive Resonance Theory) model is self- organized with nonstationary input patterns in real time. But there is a multirun problem caused by fault clustering, or pertubated clustering and confines the advantage of the stationary real-time processing in ART model. In this paper, we propose the incremental vigilance threshold approach to decrease the number of multiruns. The incremental vigilance threshold approach is to learn with incremental vigilance threshold and competition with clusters.

  • PDF

A Study on Adaptive Model Updating and a Priori Threshold Decision for Speaker Verification System (화자 확인 시스템을 위한 적응적 모델 갱신과 사전 문턱치 결정에 관한 연구)

  • 진세훈;이재희;강철호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.20-26
    • /
    • 2000
  • In speaker verification system the HMM(hidden Markov model) parameter updating using small amount of data and the priori threshold decision are crucial factor for dealing with long-term variability in people voices. In the paper we present the speaker model updating technique which can be adaptable to the session-to-intra speaker variability and the priori threshold determining technique. The proposed technique decreases verification error rates which the session-to-session intra-speaker variability can bring by adapting new speech data to speaker model parameter through Baum Welch re-estimation. And in this study the proposed priori threshold determining technique is decided by a hybrid score measurement which combines the world model based technique and the cohen model based technique together. The results show that the proposed technique can lead a better performance and the difference of performance is small between the posteriori threshold decision based approach and the proposed priori threshold decision based approach.

  • PDF