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Abstract 

 
The effectiveness of Wi-Fi networks is greatly influenced by the optimization of contention 
window (CW) parameters. Unfortunately, the conventional approach employed by IEEE 
802.11 wireless networks is not scalable enough to sustain consistent performance for the 
increasing number of stations. Yet, it is still the default when accessing channels for single-
users of 802.11 transmissions. Recently, there has been a spike in attempts to enhance network 
performance using a machine learning (ML) technique known as reinforcement learning (RL). 
Its advantage is interacting with the surrounding environment and making decisions based on 
its own experience. Deep RL (DRL) uses deep neural networks (DNN) to deal with more 
complex environments (such as continuous state spaces or actions spaces) and to get optimum 
rewards. As a result, we present a new approach of CW control mechanism, which is termed 
as contention window threshold (𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) . It uses the DRL principle to define the 
threshold value and learn optimal settings under various network scenarios. We demonstrate 
our proposed method, known as a smart exponential-threshold-linear backoff algorithm with 
a deep Q-learning network (SETL-DQN). The simulation results show that our proposed 
SETL-DQN algorithm can effectively improve the throughput and reduce the collision rates. 
 
 
Keywords: Contention window threshold (𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜), deep Q-learning network (DQN), 
deep reinforcement learning (DRL), smart exponential-threshold-linear backoff algorithm 
with deep Q-learning network (SETL-DQN), wireless networks. 
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1. Introduction 

The number of internet users is increasing hugely as time goes on. At the start of October 
2021, more than 62 percent of the world’s total population, roughly 4.88 billion people 
worldwide, used the internet. Meanwhile, the data is continuously growing. Currently, the 
increase is at the annual rate of 4.8 percent, equal to an average of about 600,000 new users 
per day [1]. Hence, the wireless local area network (WLAN) has become very popular as one 
of the technologies that use radio waves for connecting to the internet by any device, such as 
laptop, smartphone, computer, public transportation, vehicle to vehicle, etc., anytime and 
anywhere [2]. 

Essentially, the use of Wi-Fi can fulfill the growing standards to evolve a much wider 
parameter space to set a richer usage. The performance of the radio waves used by Wi-Fi has 
been extensively studied in the past. There will always be an updated version with a faster 
speed and better performance when handling a multitude of devices. In 2020, the new IEEE 
802.11 amendment (802.11ax) was launched. It improves the Wi-Fi network performance used 
by multiple devices and sends or receives the data packet faster [3]. Then, before we knew 
802.11ax as the sixth version of Wi-Fi, 802.11ac as the fifth Wi-Fi had brought forward to see 
updating version of Wi-Fi using numbers and let the user easier to see the Wi-Fi version. It 
had started from 802.11b as the first version of Wi-Fi, 802.11a as the second version of the 
Wi-Fi, 802.11g as the third version of the Wi-Fi, 802.11n as the fourth version of the Wi-Fi. 
Therefore, if all versions are compared, we can technically see from the number that Wi-Fi 6 
is the highest version of Wi-Fi generation [4]. 

As the popularity of IEEE 802.11 WLAN grows, the rise in the density of WLAN devices 
per access point has resulted in throughput performance degradation when transmitting the 
data packet. Sending and receiving the data packets at the same time will have incomplete 
inputs such as noise, disrupted or missing information, and so on. Moreover, the collision 
primarily occurs when a node accepts more than one packet at a time, meaning both nodes 
(stations) will clash because they have the same priority causing no packets correctly delivered 
[5]. Then, when the channel is sensed to be idle, it will wait for a random amount of time 
before transmitting data. This scheme is called random backoff, and the waiting duration 
corresponds to the contention window (CW). All stations select the random waiting duration 
uniformly over the range of [0, W] [6]. CW is used for carrier-sense multiple access (CSMA) 
with collision avoidance (CA) or distributed coordination function (DCF) as a basic access 
mechanism to prevent a collision by starting from the initial transmission [5], [6]. 

As a collision avoidance technique, CW optimization significantly impacts network 
performance. If the value of CW is small, the stations just need to wait less time for data 
transmission. However, the disadvantage is that stations have a higher probability of selecting 
the same CW value, which will easily cause collisions. If the value selected by CW is large, it 
is not easy for the stations to select the same CW value. Therefore, it will not cause collisions. 
However, the stations need to wait for a long time to send out the packet [7]. Accordingly, 
selecting the appropriate CW size is very important. Related studies try to increase network 
performance by proposing several algorithms in the references [8-12]. Syed and Roh [8] 
proposed an adaptive backoff algorithm for the CW (ABA-CW), in which the number of active 
stations was estimated by observing the channel status. Gannoune and Robert [9] used 
an enhanced distributed coordination function (EDCF), which allows each station to adjust the 
size of the minimum CW. Also, Ksentini et al. [10] proposed a determinist CW algorithm 
(DCWA), distinguished between the various backoff ranges associated and the various 
contention stages. Karaca et al. [11] proposed the backoff freezing mechanism that claimed 
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to achieve the maximum network throughput under the populated networks. Choi et al. [12] 
proposed the adaptive binary negative-exponential backoff (A-BNEB) to adjust the maximum 
CW size based on the number of competing stations. 

From all the operation networking protocols optimization, there is a rise in attempts to 
improve network performance by using machine learning (ML) techniques, such as supervised 
learning, unsupervised learning, and reinforcement learning [13]. Sutton and Barto [14] 
explained that the effectiveness of the reinforcement learning (RL) algorithm learns certain 
interactions between actions and future outcomes over time, determining their performance in 
solving various tasks. Therefore, the RL has an advantage, such as its ability to interact with 
the surrounding environment from its own experience. There are several parameters, such as 
the agents (e.g., access point) that takes action (e.g., parameters optimization) at the state (e.g., 
collision probability) to get the rewards (e.g., optimizing throughput) as the network 
performance in an environment (e.g., radio waves). Many research works proposed to compare 
the RL algorithms in wireless networks to enhance the network performances [15-
17]. Furthermore, some studies [15], [16] adopted Q-learning as one of the RL algorithms on 
the intelligent transport systems (ITS) as the potential roles at vehicular Ad-hoc Networks 
(VANETs). Sun et al. [17] proposed a generic framework of autonomous cell activation and 
customized physical resource allocation schemes, also adopted the Q-learning model to satisfy 
the QoS requirements of users in order to achieve low energy consumption. 

However, the main disadvantage of Q-learning is its slow convergence rate due to its 
iterative nature and the fact that it does not rely on previous information when faced with new 
situations. Zhang et al. [18] explained that deep RL (DRL) uses deep neural networks (DNN) 
to deal with more complex environments. Furthermore, some studies [19], [20] adopt DRL 
to optimize various Wi-Fi parameters in highly dynamic and complex environments. In 
addition, the RL and DRL algorithms can now be used to study CW optimization because of 
the high computing capabilities in modern network devices. Some recent works [16], [21-25] 
discuss the CW optimization through the effectiveness of Q-learning and deep Q-learning 
network (DQN) algorithms, thus describing the problem of optimizing the CW value in mobile 
ad-hoc networks (MANETs), VANETs, and for both LTE-LAA and Wi-Fi networks. 

Wydmański and Szott [26] applied centralized contention window optimization with DRL 
(CCOD) to predict the best CW values to improve saturation throughput in 802.11 wireless 
networks using DQN. CCOD used the legacy binary backoff algorithm with DQN for 
predicting the best CW values. The maximum CW value will be chosen at a high number of 
contending stations. Although, it succeeded in decreasing the collision rate. However, using 
the traditional algorithm will also increase the waiting time of extensive transmission delays 
before sending out the packet because the effectiveness of waiting time is also essential. 
Besides, Ke et al. [27] proposed a smart exponential-threshold-linear (SETL) algorithm 
scheme. After each transmission, the CW threshold value is applied to define how CW value 
behaves. When the CW value is smaller than the CW threshold value, the CW value is adjusted 
exponentially to reduce the collision possibility. Hence, the CW threshold value can quickly 
adapt to the networks with a low number of competing stations. Conversely, when the CW 
exceeds the CW threshold value, the CW size is adjusted linearly to avoid excessive 
transmission delays with a high number of competing stations. 

According to the results of extensive simulations of the proposed SETL scheme, it 
outperforms any other related backoff algorithm methods, including binary exponential 
backoff (BEB), linear increase linear decrease (LILD), and exponential increase exponential 
decrease (EIED) in terms of saturation throughput and collision rate in both low and high 
network load. The CW threshold value of the SETL algorithm scheme is a fixed value. 
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Nevertheless, the scenario in this paper will set different values of CW threshold value at 
different network environments for packet transmission efficiency. However, the CW 
threshold value is not easy to define. Therefore, the DQN algorithm will be used via 
exploration during the learning phase to determine the CW threshold value. This research 
proposed the SETL-DQN algorithm, which aims directly to learn the optimum policy and leads 
to a better performance than related backoff algorithms, including legacy CSMA/CA, SETL 
[27], CCOD-DQN [26]. The legacy CSMA/CA will use BEB as a standard of 802.11 wireless 
networks. Hence, 802.11ac will be used to exhibit the experiment parameter operation. 

The research paper will be divided into six-section to present more systematically. The first 
section will explain the introduction. The second section will explain the related works. The 
basic explanation of DQN will be presented in the third section, which is divided into the basic 
explanation of DRL and partially observable Markov decision process (POMDP) definition. 
The fourth section will explain the proposed method of the SETL-DQN algorithm scheme, 
which is divided into the SETL algorithm and SETL-DQN algorithm. The fifth section will 
explain the performance evaluation. The last section will discuss the conclusion. 

2. Related Works 
The applications of RL for Wi-Fi networks have currently been applied in various scenarios 
to enhance network performance [15], [17]. For instance, Wu et al. [15] proposed a protocol 
that can store the data in VANETs by transferring data to a new carrier (vehicle), where adopts 
the RL-based algorithm to consider long-term efficiency. Sun et al. [17]  proposed an 
autonomous energy management framework using cell activation techniques and designed a 
Q-learning model with reduced state space size to consider varying resource demand and user 
population. Further, some studies [19], [20] adopted DRL to optimize various Wi-Fi 
parameters in highly dynamic and complex environments. Balakrishnan et al. [19] adopted 
DRL to the problem of allocating time and frequency resources in OFDMA wireless systems. 
Bast et al. [20] adopted DRL model that can dynamically optimize the slice configuration of 
unplanned Wi-Fi networks without expert knowledge.  

The contention window (CW) is an integer with the range where has been determined by 
the PHY characteristic between a minimum value 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and a maximum value 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. The 
CW optimization can also use the Q-learning algorithm to increase the network's performance 
[16], [21-23]. Pressas et al. [16] proposed MAC protocol features a Q-learning-based 
algorithm to adjust the CW size from probabilistic rebroadcasts by randomly picking an action 
via exploration or exploitation to achieve the highest Q-value for its current state. Han et al. 
[21] proposed to adopt the Q-learning method on the cooperative learning algorithm and the 
non-cooperative learning algorithm by intelligently tuning the CW size for both LTE-LAA 
and Wi-Fi nodes. Zerguine et al. [22] proposed a mechanism based on Q-learning (MISQ) to 
optimize MAC protocols performance in MANETs, where each station selects the appropriate 
CW based on the transmitted number of data packets and the occurred collisions. Cho [23] 
proposed the RL agent based on Q-learning to control the data transmission rates in CSMA/CA 
wireless networks, where the agent observes the timeout event of packets and select 
appropriate modulation and coding schemes (MCS) to control the data transmission rates in 
order to make the use of available bandwidth effectively. 

DQN is based on Q-learning and a value function-based DRL algorithm. Compared to 
simple Q-learning, DQN is an additional DNN to enable more effective reward extrapolation 
with yet unseen states. DQN algorithm is also used for CW optimization in more complex 
network scenarios to maximize a network-level utility used in references [24], [25]. Kumar et 
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al. [24] designed an intelligent node that can dynamically adapt its minimum CW (MCW) 
parameter to maximize a network-level utility without knowing the MCW values in other 
nodes. In another study [25], the authors proposed a self-adaptive MAC layer algorithm 
employing DQN with a novel contention information-based state representation to improve 
the performance of the V2V safety packet broadcast. 

In [26], the authors proposed applying centralized contention window optimization with 
DRL (CCOD) method to the task saturation throughput 802.11 networks optimization by 
correctly predicting the best CW values and using DQN to increase the network throughput. 
However, the legacy binary backoff algorithm is used by CCOD with DQN for predicting the 
best CW values. Therefore, the BEB algorithm makes a longer waiting time before sending 
the packet transmission because the CW value will choose the maximum CW value at the 
heavy network load.  

Related work [27] proposed the SETL backoff algorithm that has already proven better 
performance than the legacy binary backoff algorithm because of the use of the CW threshold 
value. The result shows that the CW threshold value chose the exponential result to quickly 
adapt with a light network load and fewer competing stations. Conversely, to avoid 
dramatically increasing the CW threshold value, it chose the linear result with the heavy load 
network and bigger competing stations. As a result, it will reduce the needed time for sending 
out the successful transmission packet. The SETL algorithm will be applied to different 
network scenarios. However, the CW threshold value is not easy to define. This paper proposes 
adopting DQN on the SETL backoff algorithm to stipulate the CW threshold value via 
exploration in the learning phase with more or less competing stations in the WLANs 
environment. 

3. Applying DRL Tools to 802.11 Wireless Networks 

3.1 Deep Reinforcement Learning (DRL) 

 
Fig. 1. Deep reinforcement learning (DRL) scheme. 

 
RL has been used successfully for many works because its ability advantage of self-learning 
agent interacts with the surrounding environment based on the experience. Hence, the agent's 
primary purpose is to explore by observing the state to estimate the function of the environment 
and learning the right strategy for always performing the best action, and exploiting the agents 
to maximize the accumulated reward. The interaction way of the RL parameters is between 
the information exchange by the agent action and the environment from every state. The 
reward is given from the training process as the output by applying the strategy for enhancing 
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more best policy. Then, the agent will be able to determine the policy by DNN to estimate a 
future reward for yet unseen states. Fig. 1 explains the interaction between the RL agent with 
the environment: (i) an agent evaluates the current state of the environment as the input of 
DNN, (ii) performs the action based on the policy (strategy) by DNN as the output, (iii) the 
agent optimizes its decision-making policy through a training phase until it discovers the 
correct decision for each state of the environment will be visited, (iv) the rewards were given 
from the environment by the appropriate behavior from the action has been taken.  

3.2 Partially Observable Markov Decision Process (POMDP) Definition 
Markov decision process (MDP) is the required setup framing problem optimization which 
consists of agent, action, state, and reward. It will be explained in more detail by partially 
observable Markov decision process (POMDP) [26], the tuple formally (𝑆𝑆,𝐴𝐴,𝑇𝑇,𝑅𝑅,Ω,𝑂𝑂, 𝛾𝛾) 
will describe for each element, as follow: 

The agent applied in this paper is located in the access point (AP). The AP has a global 
view of observing all network environments and determining appropriate 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value. 
The AP can put the 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value in the beacon frames. Accordingly, the stations can set 
the 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value. 

The state (𝑠𝑠 ∈ 𝑆𝑆) is the current situation of the exact status for all connected devices to the 
wireless network. 

The action (𝑎𝑎 ∈ 𝐴𝐴) is carried out by the agents to set the new 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value updated 
through exploration by DQN in the learning phase, and the adjustment of action value is an 
integer 𝑎𝑎 between 0 and 7. The definition of the new 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value is shown in (1), which 
is the range of the new 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value is from 128 to 1024.  
 

𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 27 × (1 + 𝑎𝑎)    (1) 
 

When the action is determined, the current state will change to the next state (𝑠𝑠′ ∈ 𝑆𝑆) 
according to the transition probabilities 𝑇𝑇(𝑠𝑠′|𝑠𝑠, 𝑎𝑎) 

The network normalized throughput is the number of successfully delivered bits per second. 
It defines the reward function 𝑟𝑟 ∈ [0,1] in SETL-DQN. The normalized throughput is defined 
as the ratio of the obtained throughput to the channel bit rate. The estimated normalized 
throughput should be a real number between 0 and 1.  

The observation 𝑜𝑜 ∈ Ω is the collision probability history. The current collision probability 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 is defined as the unsuccessful transmission probability. 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 is calculated as shown in (2), 
where the number of transmitted frames is 𝑁𝑁𝑡𝑡 and the number of correctly received frames is 
𝑁𝑁𝑟𝑟. When the station transmitted the packet, piggyback can notify AP, and AP can know the 
number of 𝑁𝑁𝑡𝑡, and the number of 𝑁𝑁𝑟𝑟 can be calculated by the AP node itself. The previous 
state and current state will be taken as the history of recently observed collision probabilities 
𝐻𝐻(𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐). By comparing the values between the two observations, we can know whether the 
packet collision rate increases or decreases at each time point. If the collision rate increases, 
the parameters can be adjusted and optimized again. 
 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑁𝑁𝑡𝑡− 𝑁𝑁𝑟𝑟
 𝑁𝑁𝑡𝑡

       (2) 
 

The discount coefficient (𝛾𝛾), corresponds to the long-term rewards over the comparison of 
immediate rewards. If 𝛾𝛾 is close to one, the agent will determine the importance of future 
rewards. Conversely, if 𝛾𝛾 is close to zero, the agent will be worthless in the future rewards. 
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4. Proposed SETL-DQN Algorithm 

4.1 Smart Exponential-Threshold-Linear (SETL) Algorithm 

 
Fig. 2. Binary exponential backoff (BEB) scheme. 

 
The CCOD-DQN algorithm proposed by [26] is succeeded in finding the best CW value, 
minimizing the collision rate, and maximizing the saturation throughput of IEEE 802.11 
wireless networks. Fig. 2 shows the CW settings for the binary exponential backoff scheme. 
The CW value is between minimum CW value 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and maximum CW value 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, with 
𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 16 , 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 1024, and 𝑚𝑚 = 7. The CW value will be doubled if the packet 
transmission fails. The CW value will be doubled continuously until reaching 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  if 
transmissions keep failing. The successful packet transmission will reset the CW value into 
𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 . When 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  was chosen at the heavy network load and the bigger contending 
stations condition, a successful transmission will make the CW jump from a large value, i.e., 
𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, to a small value, i.e., 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. This phenomenon will make the station wait for a long 
time to send out the packet successfully. Because under a heavily loaded network, the smaller 
values of CW will cause the stations to get collided again. The stations need time to make CW 
value get bigger. Therefore, the transmission efficiency will be reduced. 

 
Fig. 3. Smart exponential-threshold-linear (SETL) backoff scheme. 

 
Therefore, to solve these problems, the SETL backoff algorithm proposed by research [27] 

has been proven to minimize the collision rate, maximize the throughput and reduce the needed 
time (slightly idle time) for sending out the successful transmission packet. SETL algorithm 
takes advantage of EIED and LILD backoff algorithm to improve network performance in 
light and heavy network load conditions. Fig. 3 is shown the SETL backoff algorithm. The 
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𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is set to determine whether there are fewer or more contending stations in the 
WLANs. If the CW size is smaller than the 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑒𝑒𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value, the CW size of the competing 
station will adjust exponentially because the CW value is in the lower region, which implies 
the light network load, where the number of collisions that occurred is lower. Conversely, if 
the CW size is bigger than 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value, the CW size of the competing station will adjust 
linearly to adapt the network because the CW value is in the higher region in which the heavy 
network load is detected, where the competing station has retransmitted many times due to the 
collisions. However, after each successful packet transmission, the SETL backoff algorithm 
will directly reduce the CW value for the next transmission either exponentially or linearly. 

On the SETL backoff algorithm scheme. The CW will increase, and its increment will be 
decided by the 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value. When the CW value is smaller than 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value. 
The current CW value at unsuccessful packet transmission will be doubled, and the current 
CW value at successful packet transmission will be halved from the original CW value. In 
addition, when the CW value is bigger than 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  value. The current CW value at 
unsuccessful packet transmission will be added 32 each time, and the current CW value at the 
successful packet transmission will be subtracted 32 each time. Furthermore, the 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 
is a fixed value,  𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑙𝑙𝑙𝑙 = 512. Nevertheless, the scenario in this paper will be setting 
different values of 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 for different network environment scenarios for optimizing 
packet transmission efficiency. However, the 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  value is not easy to define. 
Therefore, to solve the problem, SETL-DQN will be proposed to train the agent via exploration 
at the learning phase and determine the appropriate 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value. 

4.2 SETL-DQN Algorithm 
This paper will adopt the DQN algorithm to the SETL algorithm, called SETL-DQN as the 
proposed algorithm to define the backoff threshold value via exploration at the learning phase. 
The self-learning agent is located at the AP, which interacts with the wireless network IEEE 
802.11 (environment) to generate a new 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value (action) at the current state and 
then transit to the next state in the form of 𝑇𝑇(𝑠𝑠′|𝑠𝑠,𝑎𝑎). Moreover, the agent observes the 
collision probability 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐. The collision rates of the previous state and the current state are 
observed as the history of recently observed collision probabilities 𝐻𝐻(𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐). In addition, the 
stations will execute a backoff algorithm. The new 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  values will send to the 
stations via Beacon. Finally, the agents will get the reward (normalized throughput) as a 
successfully delivered packet. We define discount coefficient 𝛾𝛾  for future rewards 
corresponding to the long-term reward over immediate reward. 

The detailed simulation model of the SETL-DQN algorithm can be shown by following 
Algorithm 1. The SETL-DQN algorithm operates in two phases. Firstly, the learning phase, 
which includes the pre-processing and the running process. Secondly, the evaluation phase 
will be entered after the model is trained. The first stage is the learning phase. The pre-
processing of the DQN algorithm necessitates the setting of a few key parameters. The 
performance is determined by discount coefficient 𝛾𝛾, which means the long-term rewards are 
more important than short-term rewards. Second, the various new hyperparameters added deep 
learning (DL) into RL algorithms, requiring each neural network to provide a learning rate α 
as an updated new value over an old value. Third, the optimization algorithm is used to 
optimize neural networks. Finally, DQN algorithms also used a replay buffer B, which 
provides the basis for mini-batch sampling by recording all interactions for the agent at the 
previous and current state. The interactions are stored in the replay buffer as (𝑠𝑠,𝑎𝑎, 𝑟𝑟, 𝑠𝑠′) tuples. 
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Algorithm 1. Pseudo code for SETL-DQN algorithm 
Notation 
𝐻𝐻(𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐) : history of recently observed collision probabilities 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 : data sent since the last interaction 
𝑎𝑎 : previous action 
𝑠𝑠 : state 
𝑟𝑟 : reward 
𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  : the new contention window threshold 

1:  procedure LEARNING (𝐻𝐻(𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐), 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑎𝑎) 
2:      𝑠𝑠 ←   preprocess 𝐻𝐻(𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐) 
3:      𝑟𝑟 ←   normalize (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) 
4:      𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠, 𝑎𝑎, 𝑟𝑟) 
5:      𝑎𝑎′ ←  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
6:      𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜   ←  128 ×  (1 + 𝑎𝑎′) 
7:      return 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  
8:  end procedure 
9:  procedure EVALUATION (𝐻𝐻(𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐)) 

10:      𝑠𝑠 ←   preprocess 𝐻𝐻(𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐) 
11:      𝑎𝑎 ←  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) 
12:      𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜   ←  128 ×  (1 + 𝑎𝑎) 
13:      return 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  
14:  end procedure 

 
The running process algorithm was started by defining the model and forwarding the 

network structure of the Q-function. The history of collisions probability is the input, and the 
highest Q-value of all state-action pairs [𝑄𝑄(𝑠𝑠,𝑎𝑎1) ,𝑄𝑄(𝑠𝑠,𝑎𝑎2) ,𝑄𝑄(𝑠𝑠,𝑎𝑎3), …  ,𝑄𝑄(𝑠𝑠,𝑎𝑎𝑛𝑛)] is the 
output. To model the Q-function, the dimension of action space used DQN to update the 
prediction value of the maximum Q-value network by converting to 𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜 vector. Adam is 
selected as the optimization algorithm. An 𝜀𝜀 -greedy policy was implemented for the agent as 
the attenuation parameters. The model parameters are copied to the model target at a fixed 
number of training times. Every action has a selected random number probability, named 
exploration. A noise factor influences each action. A large value is usually used to allow for 
more exploration so the algorithm can transit to a different (𝑠𝑠,𝑎𝑎)  pair and gain experience to 
get the best reward. In the beginning, we set the value of 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  value to 128. The 
stations use the legacy CSMA/CA protocol to transmit data packets. Then during the training 
period, the agent will generate different actions through explorations by observing the collision 
probability to adjust the 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value and expect a better cumulative reward. In addition, 
as the training gradually converges, the degree of exploration slowly decreases to allow for 
more exploitation to select the largest subscript of 𝑄𝑄-value for its current state. 

The experience is added from the experience replay pool to store and execute the agent acts 
for the next state. Each observation caused the experience in the Wi-Fi network as the current 
collision probability (the transmission failure probability), which was calculated based on the 
number of transmitted frames and correctly received frames. Collision probability 
measurements are performed at predetermined intervals throughout interactions and reflect the 
appropriateness of the current 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  value. In practice, the agent does not have 
immediate access to the current collision probability. However, all stations are sending the 
packets to the AP. The amount of data transmitted to AP from stations can be piggybacked to 
inform the agent located at the AP. The AP sends out the acknowledgment packets back to the 
stations. Then, the agent can get the number of correctly received data packets. The agent can 

Send to the neural 
network 

Training a neural 
network 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022                               343 

get the collision probability with the number of packets sent by stations and the number of 
packets correctly received at the AP. 

After the model has been trained, the evaluation phase as the second stage has begun. 
During this stage, it only needs to observe the state, get the action through the trained model, 
and choose the appropriate 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑒𝑒𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜. Also, the agent will always choose the optimal action 
when the noise factor is zero. No more rewards are necessary because the agent is already 
considered completely trained and has stopped receiving updates. The agent is now ready for 
network deployment. Additionally, the algorithms smooth out the reward noise by separating 
the local and target neural networks. The local network determines the actions, while the 
learning process relies on target network predictions. 

5. Performance Evaluation 

 
Fig. 4. The topology consideration with AP update 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 when the station sent the data. 

 
The medium access control (MAC) method of IEEE 802.11 has been simulated by this 
paper. To verify that the SETL-DQN algorithm has more advantages than the CCOD-DQN 
algorithm. We implemented the SETL-DQN algorithm environment using Parl and paddle-
Paddle provided by Baidu [28] and python language. The SETL algorithm has been 
implemented based on [27], which the results show better performance than Legacy 
CSMA/CA, EIED, and LILD algorithms. To evaluate the performance of our proposed method, 
we will compare SETL-DQN with the legacy CSMA/CA, SETL [27], and CCOD-DQN [26]. 

5.1 Simulation Setup 
The simulation topology is shown in Fig. 4. The following settings set the simulation 
experiment parameters: IEEE 802.11ac wave one, 24 non-overlapping unlicensed national 
information infrastructure (UNII) channels in 5 GHz frequency band, single-user 
transmissions. The simulations were implemented on a server with a CPU 2 GHz Quad-Core 
Intel Core i5. Then, we further assumed (i) perfect and immediate state information flow to 
the agent (i.e., the current values of 𝑁𝑁𝑡𝑡 and 𝑁𝑁𝑟𝑟 are known at the AP) and (ii) the immediate 
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setup of 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 at each station. In practice, the 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 AP should inform value in 
the periodic beacon. In the future study, we will implement this mechanism into a more 
realistic topology. The experiment parameters of IEEE 802.11ac are: 8184 bits of the packet 
payload, 272 bits of MAC header, 128 bits of PHY header, ACK is 112 bits + PHY header, 
867 Mbps of channel bit rate, 9 µs of the slot time (σ), DIFS is 34 µs, SIFS is 16 µs, 
propagation delay is 1 µs, with 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 16 , and 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 1024 . In this scenario, we 
idealize the simulation settings to use the base performance of SETL-DQN before moving to 
a more realistic topology. 

Table 1 shows the SETL-DQN algorithm parameters. The replay memory 𝑀𝑀 is used to 
store the experience during the training process. The data amount will be given to the agent 
each time to utilize the iteration for sample batch size. The batch size value is 32 samples to 
estimate the error gradient before the training dataset updates the model weights. The 
optimization parameters also control how quickly the model adapts to define the appropriate 
𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 trained by neural networks. The proposed algorithm uses a network structure 
consisting of a DNN with three hidden layers fully connected networks with 128 output 
dimensions. The third hidden layer is 𝑄𝑄-value and rectified linear unit (ReLU) is used as a 
layer activation function. Randomness was incorporated into agent behavior and network 
simulation. Each experiment was run for 5,000 second interaction periods. 

 
Table 1. SETL-DQN parameters for the training process 

Parameters Value 
Learn frequency 5 

Memory size 20.000 
Memory warmup size 200 

Batch size 32 
Learning rate α 0.001 

Discount factor 𝛾𝛾 0.99 
Epsilon greedy 𝜀𝜀 0.1 

Epsilon greedy 𝜀𝜀 decrement   1e-6 

5.2 Simulation Result 
At the simulation test, we assume that the environment is an error-free median and there is no 
hidden node. The node always has enough packets for transmission. The number of nodes has 
been set from 10 stations to 150 stations with 20 intervals. The learning phase has been run at 
20 rounds to converge to the stable values. The first experiment evaluated the contention 
window value to compare SETL-DQN and CCOD-DQN algorithms. The result showed in Fig. 
5. For the CCOD-DQN, the CW value is doubled for the number of competing stations is from 
10 stations to 50 stations. Furthermore, the CW value turned into the maximum of CW in the 
heavy network loads, where 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 1024. The large value of CW will cause the station to 
need a large waiting time to send out the packets. Conversely, the SETL-DQN backoff scheme 
has guaranteed the expected result by optimizing the 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value through adopting the 
DQN algorithm to the SETL algorithm to define threshold value. After training many times, 
𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value is determined by the exploration during the learning phase and succeeded 
in quickly adapting when the light or heavy network loads at more or less competing stations. 
In the starting from the 10 stations until 150 stations, the current 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is turned up 
linearly to prevent too much waiting time before packet transmission. 
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Fig. 5. SETL-DQN and CCOD-DQN contention window value comparison. 

 
The static scenario was designed to compare the collision rate between Legacy CSMA/CA, 

SETL, CCOD-DQN, and SETL-DQN. In the second experiment, the higher number of 
competing stations, the higher the collision rate. In Fig. 6, the SETL algorithm is better than 
Legacy CSMA/CA. In comparison, the CCOD-DQN and SETL-DQN algorithms are more 
efficient in reducing the collision rate drastically than Legacy CSMA/CA and SETL 
algorithms. If we compare the collision rate of the SETL-DQN algorithm with the CCOD-
DQN algorithm, we can find that the collision rate of SETL-DQN is slightly higher than 
CCOD-DQN. The main reason is that the CCOD-DQN will set the CW to the fixed 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 to 
reduce the collision rate at a large number of contending stations. In our proposed method of 
the SETL-DQN algorithm, when the packet transmission is successful, the 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 will 
be lowered to reduce the waiting time for packet transmission. As a consequence, at the same 
time, the lower of 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value at the heavy network loads will bring a higher collision 
rate than the COOD-DQN algorithm. However, the collision rate results between SETL-DQN 
and CCOD-DQN do not differ significantly. Therefore, SETL-DQN can still effectively 
reduce the collision rate. 

 
Fig. 6. Collision rate comparison for different schemes. 

 
The third experiment of the normalized throughput comparison shows in Fig. 7. The SETL 

algorithm has better performance than Legacy CSMA/CA. The CCOD-DQN and SETL-DQN 
perform better than Legacy CSMA/CA and SETL algorithms. The CCOD-DQN scheme 
shows similar normalized throughput with the SETL-DQN algorithm in light network load. 
When the competing stations increase, the CW value of the CCOD-DQN algorithm cannot 
adapt to the heavy network load. Conversely, the SETL-DQN algorithm shows 
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outperformance over CCOD-DQN. At the competing 10 stations, the normalized throughput 
for SETL-DQN gets 0.545, and CCOD-DQN gets 0.548. The performance of SETL-DQN is 
only 3% lower than CCOD-DQN. Conversely, the proposed algorithm can show 55% better 
than CCOD-DQN for 150 stations scenario, i.e., the SETL-DQN gets 0.5, and the CCOD-
DQN only gets 0.445. From the simulation results, we can see clearly that the proposed SETL-
DQN can efficiently reduce the collision rate and improve the normalized throughput no 
matter under light or heavy network loads. 

 
Fig. 7. Normalized throughput comparison for different schemes. 

6. Conclusion 
We have presented the SETL-DQN scheme which adopts deep Q-learning network (DQN) 
principles to smart exponential-threshold-linear (SETL) backoff algorithm to learn the correct 
𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 value settings and improve the efficiency at IEEE 802.11ac environment as the 
experiment learning process. It has been effectively used to the CW optimization problem 
using the CW threshold value, 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜, SETL-DQN offers an efficient algorithm that we 
confirm (1) the 𝐶𝐶𝐶𝐶𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  value optimization can avoid excessive transmission delays 
before sending out the packet under light or heavy network loads, (2) the collision rate 
comparisons make SETL-DQN adapt quickly to the heavy network loads, (3) the normalized 
throughput of SETL-DQN shows the outperformance over the related backoff algorithms. The 
learning process has resulted in SETL-DQN obtaining a trained agent which can be directly 
applicable universally in any IEEE 802.11 access point (AP). Future studies should focus on 
applying SETL-DQN on multiagent and dynamic scenarios for removing or adding the stations 
with more realistic network conditions. 
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