• Title/Summary/Keyword: three species

Search Result 5,739, Processing Time 0.03 seconds

Effect of Sasa borealis Silage Feeding on Daily Gain, Digestibility and Nitrogen Retention in Growing Black Goat (조릿대 사일리지 급여가 육성기 흑염소 일당증체량, 소화율 및 질소축적에 미치는 영향)

  • Chung, Sang Uk;Jang Yeong, Se Young;Yun, Young Sik;Moon, Sang Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.1
    • /
    • pp.35-40
    • /
    • 2021
  • This study was conducted to evaluate the forage productivity and feed value of Sasa borealis (S. borealis) using growing black goats(S. borealis) in order to improve the utilization of S. borealis and to help mitigate the problem of reduced plant species diversity caused by S. borealis in Hanlla Mountain. One control and three treatments were made by the level of addition of S. borealis silage to the TMR feed. T1(10%), T2(20%), and T3(30%) treatments showed more daily weight gains than control group. Feed conversion ratio of T2 is 4.4g, which is significantly lower than control(P<0.05). The nitrogen retention in the control, which had relatively high dry matter intake, was 12.5g, which was significantly higher than that of T3. Sasa. borealis silage is considered to be able to use as a forage source for black goats, and if it is fed in an appropriate amount, it is considered that it will help improve livestock productivity, such as weight gain and feed conversion ratio.

Assessment of Rhizosphere Microbial Community Structure in Tomato Plants after Inoculation of Bacillus Species for Inducing Tolerance to Salinity (토마토에 염류 내성을 유도하는 바실러스 균주 처리 후 근권 미생물 군집 구조 연구)

  • Yoo, Sung-Je;Lee, Shin Ae;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.49-59
    • /
    • 2021
  • BACKGROUND: Soil salinity causes reduction of crop productivity. Rhizosphere microbes have metabolic capabilities and ability to adaptation of plants to biotic and abiotic stresses. Plant growth-promoting bacteria (PGPB) could play a role as elicitors for inducing tolerance to stresses in plants by affecting resident microorganism in soil. This study was conducted to demonstrate the effect of selected strains on rhizosphere microbial community under salinity stress. METHODS AND RESULTS: The experiments were conducted in tomato plants in pots containing field soil. Bacterial suspension was inoculated into three-week-old tomato plants, one week after inoculation, and -1,000 kPa-balanced salinity stress was imposed. The physiological and biochemical attributes of plant under salt stress were monitored by evaluating pigment, malondialdehyde (MDA), proline, soil pH, electrical conductivity (EC) and ion concentrations. To demonstrate the effect of selected Bacillus strains on rhizosphere microbial community, soil microbial diversity and abundance were evaluated with Illumina MiSeq sequencing, and primer sets of 341F/805R and ITS3/ITS4 were used for bacterial and fungal communities, respectively. As a result, when the bacterial strains were inoculated and then salinity stress was imposed, the inoculation decreases the stress susceptibility including reduction in lipid peroxidation, enhanced pigmentation and proline accumulation which subsequently resulted in better plant growth. However, bacterial inoculations did not affect diversity (observed OTUs, ACE, Chao1 and Shannon) and structure (principle coordinate analysis) of microbial communities under salinity stress. Furthermore, relative abundance in microbial communities had no significant difference between bacterial treated- and untreated-soils under salinity stress. CONCLUSION: Inoculation of Bacillus strains could affect plant responses and soil pH of tomato plants under salinity stress, whereas microbial diversity and abundance had no significant difference by the bacterial treatments. These findings demonstrated that Bacillus strains could alleviate plant's salinity damages by regulating pigments, proline, and MDA contents without significant changes of microbial community in tomato plants, and can be used as effective biostimulators against salinity stress for sustainable agriculture.

Extracellular RNAs and Extracellular Vesicles: Inception, Current Explorations, and Future Applications

  • Perumal, Ayyappasamy Sudalaiyadum;Chelliah, Ramachandran;Datta, Saptashwa;Krishna, Jayachandran;Samuel, Melvin S.;Ethiraj, Selvarajan;Park, Chae Rin
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.535-543
    • /
    • 2020
  • In addition to the ubiquitous roles of cellular RNA in genetic regulations, gene expression and phenotypic variations in response to environmental cues and chemotactic signals, the regulatory roles of a new type of RNA called extracellular RNAs (exRNAs) are an up-and-coming area of research interest. exRNA is transported outside the cell through membrane blebs known as membrane vesicles or extracellular vesicles (EVs). EV formation is predominant and conserved among all microbial forms, including prokaryotes, eukaryotes, and archaea. This review will focus on the three major topics concerning bacterially derived exRNAs, i.e., 1) the discovery of exRNA and influence of extraneous RNA over bacterial gene regulations, 2) the known secretion mechanism for the release of exRNA, and 3) the possible applications that can be devised with these exRNA secreted by different gram-negative and gram-positive bacteria. Further, this review will also provide an opinion on exRNA- and EV-derived applications such as the species-specific exRNA markers for diagnostics and the possible roles of exRNA in probiotics and the epigenetic regulations of the gut microbiome.

Current Status and Direction of Weed Management According to Cropping Systems (작부체계에 따른 잡초관리 연구 동향과 방향)

  • Lee, Jihyun;Shin, Myeong-Na;Ku, Bon-Il;Shim, Kang-Bo;Jeon, Weon-Tai
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.459-466
    • /
    • 2021
  • The present study was conducted to propose future research directions for weed management by examining the current trends of research on weed occurrence according to cropping systems. The cropping systems are developed for the efficient use of arable land, and the weed flora changes according to the management practices of a given cropping system. In particular, weed occurrence can be reduced by altering the soil environment. In addition, cultivation methods, such as tillage, affect the weed seed bank in the soil, thus altering the pattern of weed occurrence. Here, we propose three weed management practices according to the cropping system. First, it is necessary to develop a model that can classify weed species by analyzing young seedlings and can predict the flora in the field. Second, it is important to manage the cropping system history and establish a database of agricultural information, which can be linked to meteorological and geographic data. Third, it is critical to estimate the weed occurrence and soil seed bank dynamics, based on which a cropping system platform and digitalization technology can be developed. In the future, the prediction of weed occurrence and control according to the cropping system will contribute to sustainable agriculture by reducing the use of herbicides and solving the problems of resistant weeds.

Characteristics and Restoration Strategies of Warm-Temperate Forests Vegetation Types in Island Area on the Korean Peninsula (한반도 도서지역의 난온대림 식생유형 특징 및 복원전략)

  • Kang, Hyun-Mi;Kang, Ji-Woo;Sung, Chan-Yong;Park, Seok-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.5
    • /
    • pp.507-524
    • /
    • 2022
  • In this study, we revealed the location environment and community structural characteristics after extensively investigating Korea's warm-temperate island areas and categorizing vegetation through TWINSPAN analysis. Based on it, this study aims to suggest the direction of the vegetation restoration plan for warm-temperate forests by deriving a restoration strategy for each vegetation type. The vegetation types were clearly divided into eight types, and communities I through IV were good evergreen broad-leaved forests dominated by Machilus thunbergii and Castanopsis sieboldii. On the other hand, communities V through VIII were Pinus thunbergii forest, deciduous broad-leaved forest, and artificial forest, and retrogressive succession vegetation in the warm-temperate areas. The environmental factors derived from the DCA analysis were altitude (average temperature of the coldest month) and distance from the coastline (salt tolerance). The distribution pattern of warm-temperate forests has been categorized into M. thunbergii, C. sieboldii and Cyclobalanopsis spp. forest types according to the two environmental factors. It is reasonable to apply the three vegetation types as restoration target vegetation considering the location environment of the restoration target site. In communities V through VIII, P. thunbergiiand deciduous broad-leaved formed a canopy layer, and evergreen broad-leaved species with strong seed expansion frequently appeared in the ground layer, raising the possibility of vegetation succession as evergreen broad-leaved forests. The devastated land where forests have disappeared in the island areas is narrow, but vegetation such as P. thunbergii and deciduous broad-leaved forests, which have become a retrogressive succession, forms a large area. The restoration strategy of renewing this area into evergreen, broad-leaved forests should be more effective in realizing carbon neutrality and promoting biodiversity.

A Study on the Patterns and Characteristics of Spatial Changes in Unregistered Private House Gardens (문화재 미등록 민가정원의 공간변화 양상 및 특성 연구)

  • Lee, Kyeong-Mi;Bae, Jun-Gyu;Shin, Hyun-Sil
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.3
    • /
    • pp.67-73
    • /
    • 2022
  • This study tracked the changing process of unregistered private house gardens by using the form at the time of the construction of gardens as the prototype of each garden, investigated the spatial value of the garden, and discussed the historical spatial value of unregistered private house gardens in terms of inheritance and change of traditional gardens. To this end, targeting on unregistered private house gardens in Gangwon-do, which are in danger of preserving their gardens due to the recent increase in the number of designated cultural heritage dismantled, the patterns of unregistered private house gardens, their characteristics and values were identified through the spatial change of the garden, and the following results were derived. First, the unregistered private house gardens were able to inherit and maintain the form of a traditional garden, being located in a clan village. The garden space was divided by the influence of Confucian philosophy, and the components of the garden, tree species and planting methods appeared differently. In other words, the use of garden components according to the status hierarchy appeared. Second, space reduction was continuously confirmed at four target sites. The reduced spaces are garden spaces, and part of the garden was attributed to the state due to the building of new road and environmental improvement project. The reduced spaces are garden spaces, and part of the garden was attributed to the state due to the new road and environmental improvement project. Third, eight old big trees over 100 years old were identified in three of the four target sites, and the garden components such as stone water tanks, quickset doors, and ponds were commonly identified in Korea, China, and Japan during the Joseon Dynasty, inheriting the historicity of the traditional garden.

Analysis of Volatile Compounds in Bamboo and Wood Crude Vinegars by the Solid-Phase Microextracion(SPME) Method (SPME법에 의한 죽초 및 목초액 중의 휘발성 성분 분석)

  • Mun, Sung-Phil;Ku, Chang-Sub
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.80-86
    • /
    • 2002
  • Volatile compounds in three different kinds of crude vinegars obtained from oak (Quercus serrata), bamboo (phyllostachys) and pine (Pinus densiflora) species were analyzed by the solid-phase microextraction (SPME) method. A total of 264 peaks were detected on the chromatograms obtained from the polar (CBP 20) and the nonpolar (CBP 1) columns, which were used for analyzing the volatile compounds in these vinegars. The major volatile compounds identified by using the polar column were 2-butanone, acetic acid, guaiacol, phenol, cresols, 4-ethyl guaiacol, 4-ethyl phenol, and syringol. Using the nonpolar column, seven compounds could be identified: 1,2-dimethoxybenzyl alcohol, 1-hydroxy-2-butanone, 1-(2-furanyl)-1-propane, ethisolide, furfuryl acetate, 1,2-dimethoxybenzene, phenyl acetate. The volatile compounds were classified into five groups: phenols, neutral compounds, organic acids, esters and others. The phenols were the main component and comprised 49~65% of the volatile compounds of these vinegars. In the case of bamboo vinegar, the proportion of the phenols in the volatile compounds was lower than that of the two wood vinegars. However, the proportions of the neutral compounds and the organic acids were higher than those of the wood vinegars. Therefore, it seems that these differences of the proportions of the volatile compounds would make a certain difference of a smoke flavor between the bamboo vinegar and the wood vinegars.

A Study on Germination Characteristics through Seed Variable Immersion for Restoration of North Korea Forest (북한산림복구용 종자 변온침지 처리를 통한 발아특성 연구)

  • Choi, Jong-O;Park, Yong-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • This study was conducted to investigate the germination characteristics through the temperature change treatment compared to the general room temperature immersion treatment of the native species, the Larix kaempferi, and the Berula platyphyllavar. japonica seeds, and to obtain basic data for the production of healthy seedlings with high productivity and efficiency. As a result, the germination rate of the larch seeds showed a significant difference according to room temperature and temperature immersion treatment, and the average germination days of the birch seeds showed a significant difference according to room temperature immersion and temperature immersion treatment. On the other hand, there was no significant difference in germinal uniformity. The results of the study are as follows. First, the results of the analysis of the fallen leaves were the highest germination rate in the treatment of 1.5 days of hot water and 1.5 days of cold water, the fastest germination rate, the lowest average germination day, and the highest germination uniformity. This is the best result in most items, and the change temperature immersion treatment of hot and cold baths was superior to the conventional room temperature immersion treatment. Second, the results of birch tree showed that the germination rate was the highest in 1.5 days of hot water and 1.5 days of cold water. The average germination day is 1.5 days of cold water 1.5 days of hot water 1.5 days, but the difference between 1.5 days of hot water and 1.5 days of cold water is 0.01 days. The highest germinated uniformity was found in 1.5 days of cold water and 1.5 days of hot water. As a result, in the case of larch and birch, the seed temperature immersion (1.5 days of hot water, 1.5 days of cold water) treatment is superior to the existing three-day immersion treatment in various analysis methods, and it is expected that productivity and efficiency can be improved at a low cost in a short period of time at the seedling production site through seeds.

Antioxidant and Antimicrobial Activities of Various Citrus Peels (감귤류 종류에 따른 과피의 산화방지 및 항균 활성)

  • Choi, Hyeonjeong;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.5
    • /
    • pp.356-363
    • /
    • 2022
  • To investigate the functional activity of different citrus fruit peels, antioxidant compounds in 70% ethanol extracts of mandarin, lemon, orange, and grapefruit peel powders were identified, and antioxidant and antibacterial activities were quantitated. Mandarin peel contained the highest content of total phenolic compounds and total flavonoid substances (21.46±0.12 mg GAE/g and 11.57±0.05 mg RE/g, respectively). The total phenolic compound content of the three other citrus fruits was 14.16±0.18-18.44±0.07, and their total flavonoid content was 5.51±0.10-7.46±0.09 mg RE/g. DPPH radical scavenging activity was the highest in lemon peel (87.64±0.21%), and mandarin peel displayed the best antioxidant activity with respective ABTS radical scavenging activity and FRAP measurements of 43.20±0.61% and 78.82±1.06 mM TE/g. Grapefruit peel antimicrobial activity increased with treatment time, and was the most potent among the four tested citrus species, inhibiting Staphylococcus aureus by about 4.05 log cycle. These findings demonstrate that mandarin and grapefruit peel can be used to prevent oxidation, improve food storage capabilities, and potentially preserve food quality.

Lethal (2) Essential for Life [l(2)efl] Gene in the Two-spotted Cricket, Gryllus bimaculatus (Orthoptera: Gryllidae) (쌍별귀뚜라미(Gryllus bimaculatus)의 l(2)efl cDNA 클로닝과 발현분석)

  • Kwon, Kisang;Lee, Nuri;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.671-676
    • /
    • 2021
  • A cDNA encoding the protein lethal (2) essential for life [l(2)efl] was cloned from Gryllus bimaculatus and named GBl(2)efl. This protein is composed of 189 amino acids, including an N-glycosylation site and 15 phosphorylation sites. Its predicted molecular mass is 21.19 kDa, with a theoretical isoelectric point of 6.2. The secondary structure of GBl(2)efl was predicted from the identification of random coils (56.08%), alpha helices (22.22%), extended strands (17.99%), and beta turns (3.7%) through sequence analyses. A homology analysis revealed that GBl(2)efl exhibited a high similarity with other species at the amino acid level, ranging from 52% to 69%. While GBl(2)efl mRNA expression was higher in the dorsal longitudinal flight muscle following a three-day starvation and in the Malpighian tubules following a one-day starvation, no changes in expression were detected in other tissues. Furthermore, tunicamycin-induced endoplasmic reticulum (ER) stress resulted in an approximately 1.8-fold higher expression in the fat body compared with the wild type.