Browse > Article
http://dx.doi.org/10.13103/JFHS.2020.35.6.535

Extracellular RNAs and Extracellular Vesicles: Inception, Current Explorations, and Future Applications  

Perumal, Ayyappasamy Sudalaiyadum (Department of Bioengineering, McGill University)
Chelliah, Ramachandran (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University)
Datta, Saptashwa (Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology)
Krishna, Jayachandran (Centre for Biotechnology, Anna University)
Samuel, Melvin S. (School of Environmental Science and Engineering, Indian Institute of Technology)
Ethiraj, Selvarajan (Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology)
Park, Chae Rin (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University)
Publication Information
Journal of Food Hygiene and Safety / v.35, no.6, 2020 , pp. 535-543 More about this Journal
Abstract
In addition to the ubiquitous roles of cellular RNA in genetic regulations, gene expression and phenotypic variations in response to environmental cues and chemotactic signals, the regulatory roles of a new type of RNA called extracellular RNAs (exRNAs) are an up-and-coming area of research interest. exRNA is transported outside the cell through membrane blebs known as membrane vesicles or extracellular vesicles (EVs). EV formation is predominant and conserved among all microbial forms, including prokaryotes, eukaryotes, and archaea. This review will focus on the three major topics concerning bacterially derived exRNAs, i.e., 1) the discovery of exRNA and influence of extraneous RNA over bacterial gene regulations, 2) the known secretion mechanism for the release of exRNA, and 3) the possible applications that can be devised with these exRNA secreted by different gram-negative and gram-positive bacteria. Further, this review will also provide an opinion on exRNA- and EV-derived applications such as the species-specific exRNA markers for diagnostics and the possible roles of exRNA in probiotics and the epigenetic regulations of the gut microbiome.
Keywords
exRNA; Extracellular vesicles; Secretory mechanisms; Molecular pathogenesis; Diagnostics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Montanaro, L., Trere, D., Derenzini, M., The emerging role of RNA polymerase I transcription machinery in human malignancy: a clinical perspective. Oncotarget., 6, 909 (2013)
2 Pavankumar, A.R., Ayyappasamy, S.P., Sankaran, K., Small RNA fragments in complex culture media cause alterations in protein profiles of three species of bacteria. Biotechniques, 52(3), 167-172 (2012).   DOI
3 Vlassov, V.V., Laktionov, P.P., Rykova, E.Y., Extracellular nucleic acids. Bioessays, 29(7), 654-667 (2007).   DOI
4 Vunjak-Novakovic, G., Altman, G., Horan, R., Kaplan, D.L., Tissue engineering of ligaments. Annu. Rev. Biomed. Eng., 6, 131-156 (2004).   DOI
5 Eigenbrod, T., Dalpke, A.H., Bacterial RNA: an underestimated stimulus for innate immune responses. J. Immunol., 195(2), 411-418 (2015).   DOI
6 Vanaja, S.K., Rathinam, V.A., Atianand, M.K., Kalantari, P., Skehan, B., Fitzgerald, K.A., Leong, J.M., Bacterial RNA: DNA hybrids are activators of the NLRP3 inflammasome. Proc of the Nat. Aca. Sci., 111(21), 7765-7770 (2014).   DOI
7 Dubnau, D., DNA uptake in bacteria. Annu. Rev. Microbiol., 53(1), 217-244 (1999).   DOI
8 Nayak, M., Perumal, A.S., Nicolau, D.V., van Delft, F.C., Bacterial motility behaviour in sub-ten micron wide geometries. In 2018 16th IEEE International New Circuits and Systems Conference (NEWCAS) (pp. 382-384) (2018).
9 Holmqvist, E., Vogel, J., RNA-binding proteins in bacteria. Nat. Rev. Microbio., 16, 601-615 https://doi.org/10.1038/s41579-018-0049-5 (2018).   DOI
10 Kuipers, M.E., Hokke, C.H., Smits, H.H., Pathogen-derived extracellular vesicle-associated molecules that affect the host immune system: an overview. Front. Microbiol., 9, 2182 (2018).   DOI
11 Horstman, A.L., Kuehn, M.J., Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J. Biol. Chem., 277(36), 32538-32545 (2002).   DOI
12 Peng, L.H., Wang, M.Z., Chu, Y., Zhang, L., Niu, J., Shao, H.T., Yuan, T.J., Jiang, Z.H., Gao, J.Q., Ning, X.H., Engineering bacterial outer membrane vesicles as transdermal nanoplatforms for photo-TRAIL-programmed therapy against melanoma. Science advances, 6(27), eaba2735 (2020).   DOI
13 Hampton, T.H., Koeppen, K., Bashor, L., Stanton, B.A., Selection of Reference Genes for Quantitative PCR: Identifying Reference Genes for Airway Epithelial Cells Exposed to Pseudomonas aeruginosa. Am. J. Physiol. Lung. Cell. Mol. Physiol., 319(2), L256-L265 (2020).   DOI
14 Mug-Opstelten, D., Witholt, B., Preferential release of new outer membrane fragments by exponentially growing Escherichia coli. Biochimica et Biophysica Acta (BBA)-Biomembranes, 508(2), 287-295 (1978).   DOI
15 Yaganza, E.S., Rioux, D., Simard, M., Arul, J., Tweddell, R.J., Ultrastructural alterations of Erwinia carotovora subsp. atroseptica caused by treatment with aluminum chloride and sodium metabisulfite. J. Appl. Environ., 70(11), 6800-6808 (2004).   DOI
16 Zhou, K., Doyle, J.C., Essentials of robust control (104). Upper Saddle River, NJ: Prentice hall (1998).
17 Hoekstra, D., van der Laan, J.W., de Leij, L., Witholt, B., Release of outer membrane fragments from normally growing Escherichia coli. Biochim. Biophys. Acta. (BBA)-Biomembr., 455(3), 889-899 (1976).   DOI
18 Gamazo, C., Moriyon, I., Release of outer membrane fragments by exponentially growing Brucella melitensis cells. Infect. Immun., 55(3), 609-615 (1987).   DOI
19 Dorward, D.W., Garon, C.F., Judd, R.C., Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J. Bacteriol., 171(5), 2499-2505 (1989).   DOI
20 Kolling, G.L., Matthews, K.R., Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157: H7. Appl. Environ. Microbiol., 65(5), 1843-1848 (1999).   DOI
21 Yaron, S., Kolling, G.L., Simon, L., Matthews, K.R., VesicleMediated Transfer of Virulence Genes fromEscherichia coli O157: H7 to Other Enteric Bacteria. Appl. Environ. Micro-biol., 66(10), 4414-4420 (2000).   DOI
22 Storz, G., Vogel, J., Wassarman, K.M., Regulation by small RNAs in bacteria: expanding frontiers. Molecular cell, 43(6), 880-891 (2011).   DOI
23 Yau, W.L., Lambertz, U., Colineau, L., Pescher, P., MacDonald, A., Zander, D., Retzlaff, S., Eick, J., Reiner, N., Clos, J., Spath, G.F., Phenotypic characterization of a Leishmania donovani cyclophilin 40 null mutant. J. Eukaryot Microbiol., 63(6), 823-833 (2016).   DOI
24 Yue, Y., Liu, X., Xu, M., Ren, D., Liu, Q., Epidemiological dynamics of dengue fever in mainland China, 2014-2018. Int. J. Infect. Dis., 86, 82-93 (2019).   DOI
25 Lenz, D.H., Mok, K.C., Lilley, B.N., Kulkarni, R.V., Wingreen, N.S., Bassler, B.L., The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell, 118(1), 69-82 (2004).   DOI
26 Gelsinger, D.R., Uritskiy, G., Reddy, R., Munn, A., Farney, K., DiRuggiero, J. Regulatory Noncoding Small RNAs Are Diverse and Abundant in an Extremophilic Microbial Community. Msystems, 5(1) (2020).
27 MacDonald, I.A., Kuehn, M.J., Offense and defense: microbial membrane vesicles play both ways. Res. Microbiol., 163(9-10), 607-618 (2012).   DOI
28 Begic, M., Josic, D., Biofilm formation and extracellular microvesicles-The way of foodborne pathogens toward resistance. Electrophoresis, 41(20), 1718-1739 (2020).   DOI
29 Lee, H.J., Microbe-Host Communication by Small RNAs in Extracellular Vesicles: Vehicles for Transkingdom RNA Transportation. Int. J. Mol. Sci, 20(6), 1487. https://doi.org/10.3390/ijms20061487 (2019).   DOI
30 Novakovic, S., Hocevar, M., Zgajnar, J., Besic, N., Stegel, V., Detection of telomerase RNA in the plasma of patients with breast cancer, malignant melanoma or thyroid cancer. Oncology reports, 11(1), 245-252 (2004).
31 Dorward, D.W., Garon, C.F., Judd, R.C., Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J. Bacteriol., 171(5), 2499-2505 (1989).   DOI
32 Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M. Lee, J.J., Lotvall, J.O., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell. Biol., 9, 654-659 (2007).   DOI
33 Liu, J., Perumal, A.S., Doucet, F.R., Rifai, K., Ozcan, L. Kheireddine, S., Wachsmann-Hogiu, S., A flexible and portable nanocomposite-based substrate for electrochemical biosensing (Conference Presentation). Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI 10891, 108910E (2019).
34 Liu, J., Moakhar, R.S., Perumal, A.S., Roman, H.N., Mahshid, S., Wachsmann-Hogiu, S., An AgNP-deposited commercial electrochemistry test strip as a platform for urea detection. Scientific Reports, 10(1), 1-11 (2020).   DOI
35 Zhao, X., Li, M., Liu, Y., Microfluidic-Based Approaches for Foodborne Pathogen Detection. Microorganisms, 7(10), 381 (2019).   DOI
36 Sander, L.E., Davis, M.J., Boekschoten, M.V., Amsen, D., Dascher, C.C., Ryffel, B., ... & Blander, J.M., Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature, 474(7351), 385-389 (2011).   DOI
37 Nishimura, K., Hirokawa, Y.S., Mizutani, H., Shiraishi, T., Reduced heterochromatin protein 1-beta (HP1β) expression is correlated with increased invasive activity in human melanoma cells. Anticancer. Res., 26(6B), 4349-4356(2006).
38 Ando, T., Screening effect and impurity scattering in monolayer graphene. J. Phys. Soc. Jpn., 75(7), 074716-074716 (2006).   DOI
39 Choi, J.W., Kim, S.C., Hong, S.H., Lee, H.J., Secretable small RNAs via outer membrane vesicles in periodontal pathogens. J. Dent. Res., 96(4), 458-466 (2017).   DOI
40 MacDonald, I.A., Kuehn, M.J., Offense and defense: microbial membrane vesicles play both ways. Res in microbial., 163(9-10), 607-618 (2012).   DOI
41 Han, Y., Wang, F., Shao, L., Huang, P., Xu, Y., LncRNA TUG1 mediates lipopolysaccharide-induced proliferative inhibition and apoptosis of human periodontal ligament cells by sponging miR-132. Acta. Biochim. Biophys. Sin., 51(12), 1208-1215 (2019).
42 Renelli, M., Matias, V., Lo, R.Y., Beveridge, T.J., DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology, 150(7), 2161-2169 (2004).   DOI
43 Obregon-Henao, A., Duque-Correa, M.A., Rojas, M., Garcia, L.F., Brennan, P.J., Ortiz, B.L., Belisle, J.T., Stable extracellular RNA fragments of Mycobacterium tuberculosis induce early apoptosis in human monocytes via a caspase-8 dependent mechanism. PLoS One, 7(1), e29970 (2012).   DOI
44 Biller, S.J., Berube, P.M., Berta-Thompson, J.W., Kelly, L., Roggensack, S.E., Awad, L., ...& Moore, L.R., Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus. Sci. Data., 1(1), 1-11. (2014)
45 Ghosal, A., Upadhyaya, B.B., Fritz, J.V., Heintz?Buschart, A., Desai, M.S., Yusuf, D., Wilmes, P., The extracellular RNA complement of Escherichia coli. Microbiologyopen, 4(2), 252-266 (2015).   DOI
46 Grohmann, E., Christie, P.J., Waksman, G., Backert, S., Type IV secretion in Gram-negative and Gram?positive bacteria. Mol. mic., 107(4), 455-471 (2018).   DOI
47 Paudel, D.B., Ghoshal, B., Jossey, S., Ludman, M., Fatyol, K., Sanfacon, H., Expression and antiviral function of ARGONAUTE 2 in Nicotiana benthamiana plants infected with two isolates of tomato ringspot virus with varying degrees of virulence. Virology, 524, 127-139. (2018)   DOI
48 Kuehn, M.J., Kesty, N.C., Bacterial outer membrane vesicles and the host-pathogen interaction. Genes. Dev., 19(22), 2645-2655 (2005).   DOI
49 Habier, J., May, P., Heintz-Buschart, A., Ghosal, A., Wienecke-Baldacchino, A.K., Nolte, E.N., Paul, W., Fritz, J.V., 2018. Extraction and analysis of RNA isolated from pure bacteria-derived outer membrane vesicles. In Bacterial Regulatory RNA. Humana Press, New York, NY, USA, pp. 213-230.
50 Yu, J., Xu, Q.G., Wang, Z.G., Yang, Y., Zhang, L., Ma, J.Z., Sun, S.H., Yang, F., Zhou, W.P. Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J. of hep., 68(6), 1214-1227 (2018).   DOI
51 Grosshans, H., Slack, F.J., Micro-RNAs: small is plentiful. J. Cell. Biol., 156(1), 17-22 (2002).   DOI
52 Buckingham, S.D., Esmaeili, B., Wood, M., Sattelle, D.B., RNA interference: from model organisms towards therapy for neural and neuromuscular disorders. Hum. Mol. Genet., 13(2), R275-R288 (2004).   DOI
53 Cooper, T.A., Wan, L., Dreyfuss, G., RNA and disease. Cell, 136(4), 777-793 (2009).   DOI
54 Gottesman, S., Stealth regulation: biological circuits with small RNA switches. Genes & Dev., 16(22), 2829-2842 (2002).   DOI
55 Masse, E., Majdalani, N., Gottesman, S., Regulatory roles for small RNAs in bacteria. Curr. Opin. Microbiol., 6(2), 120-124 (2003).   DOI
56 Wassarman, K.M., Small RNAs in bacteria: diverse regulators of gene expression in response to environmental changes. Cell, 109(2), 141-144 (2002).   DOI
57 Whitchurch, A.K., Gene expression microarrays. IEEE Potentials, 21(1), 30-34 (2002).   DOI
58 Paudel, D.B., Ghoshal, B., Jossey, S., Ludman, M., Fatyol, K., Sanfacon, H., Expression and antiviral function of ARGONAUTE 2 in Nicotiana benthamiana plants infected with two isolates of tomato ringspot virus with varying degrees of virulence. Virology, 524, 127-139 (2018).   DOI
59 Kim, T.K., Hemberg, M., Gray, J.M., Enhancer RNAs: a class of long noncoding RNAs synthesized at enhancers. Cold. Spring. Harb. Perspect. Biol., 7(1), a018622 (2015).   DOI
60 Tsatsaronis, J.A., Franch-Arroyo, S., Resch, U., Charpentier, E., Extracellular vesicle RNA: a universal mediator of microbial communication?. Trends. Microbiol., 26(5), 401-410 (2018).   DOI
61 Pinchuk, I.V., Morris, K.T., Nofchissey, R.A., Earley, R.B., Wu, J.Y., Ma, T.Y., Beswick, E.J., Stromal cells induce Th17 during Helicobacter pylori infection and in the gastric tumor microenvironment. PLoS One, 8(1), e53798 (2013).   DOI