DOI QR코드

DOI QR Code

Current Status and Direction of Weed Management According to Cropping Systems

작부체계에 따른 잡초관리 연구 동향과 방향

  • Lee, Jihyun (Department of Central Area Crop Science, NICS, RDA) ;
  • Shin, Myeong-Na (Department of Central Area Crop Science, NICS, RDA) ;
  • Ku, Bon-Il (Department of Central Area Crop Science, NICS, RDA) ;
  • Shim, Kang-Bo (Department of Central Area Crop Science, NICS, RDA) ;
  • Jeon, Weon-Tai (Department of Central Area Crop Science, NICS, RDA)
  • 이지현 (농촌진흥청 국립식량과학원) ;
  • 신명나 (농촌진흥청 국립식량과학원) ;
  • 구본일 (농촌진흥청 국립식량과학원) ;
  • 심강보 (농촌진흥청 국립식량과학원) ;
  • 전원태 (농촌진흥청 국립식량과학원)
  • Received : 2021.08.05
  • Accepted : 2021.09.16
  • Published : 2021.12.01

Abstract

The present study was conducted to propose future research directions for weed management by examining the current trends of research on weed occurrence according to cropping systems. The cropping systems are developed for the efficient use of arable land, and the weed flora changes according to the management practices of a given cropping system. In particular, weed occurrence can be reduced by altering the soil environment. In addition, cultivation methods, such as tillage, affect the weed seed bank in the soil, thus altering the pattern of weed occurrence. Here, we propose three weed management practices according to the cropping system. First, it is necessary to develop a model that can classify weed species by analyzing young seedlings and can predict the flora in the field. Second, it is important to manage the cropping system history and establish a database of agricultural information, which can be linked to meteorological and geographic data. Third, it is critical to estimate the weed occurrence and soil seed bank dynamics, based on which a cropping system platform and digitalization technology can be developed. In the future, the prediction of weed occurrence and control according to the cropping system will contribute to sustainable agriculture by reducing the use of herbicides and solving the problems of resistant weeds.

본 연구는 작부체계에 따른 잡초 발생의 연구 동향을 고찰함으로써 향후 잡초관리의 연구 방향을 제안하고자 수행하였다. 작부체계는 경지를 효율적으로 이용하기 위해 발달했으며, 작부체계에 따라 잡초 발생도 상이하였다. 특히 토양 환경을 변화시킴으로써 잡초 발생을 경감시킬 수 있다. 또한 경운 등 경종적 방법은 종자은행의 영향으로 잡초 발생 양상이 달라진다. 따라서 작부체계 시 세 가지 잡초관리 기술의 방향을 제안하고자 한다. 첫째, 초기 발생한 잡초를 영상 분석하여 초종을 구분하고, 본답 군락을 예측할 수 있는 모델 개발이 필요하다. 둘째, 작부체계 이력을 관리하고 영농정보의 데이터베이스를 구축하여 이를 기상·지리 정보 등의 정보들과 연계하는 것이 필요하다. 셋째, 잡초 발생량과 토양 종자은행 역학관계를 추정하고 작부체계 플랫폼과 디지털화 기술 개발이 필요하다. 향후 다양한 작부체계에서 잡초 발생량 예측 및 방제는 농약 사용량을 줄이고, 저항성 잡초 문제 해결의 가능성 등 지속 가능한 농업에 기여할 것으로 생각된다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 작물시험연구(ATIS 과제 번호: PJ01438102)의 지원으로 수행된 결과입니다.

References

  1. Ahn, S. B. and T. Motomatsu. 1993. Effect of paddy-upland rotation system on soil chemical properties and rice yield. J. Korean Soc. Soil Sci. Fert. 26 : 181-188.
  2. Ambrosio, L., L. Iglesias, C. Marin, and J. P. Del Monte. 2004. Evaluation of sampling methods and assessment of the sample size to estimate the weed seedbank in soil, taking into account spatial variability. European Weed Research Society Weed Research. 44 : 224-236.
  3. Anderson, R. L., D. L. Tanaka, A. L. Black, and E. E. Schweizer. 1998. Weed community and species response to crop rotation, tillage and nitrogen fertility. Weed Technol. 12 : 531-536. https://doi.org/10.1017/s0890037x00044262
  4. Andrade, J. F., E. H. Satorre, C. M. Ermacora, and S. L. Poggio. 2017. Weed communities respond to changes in the diversity of crop sequence composition and double cropping. Weed Research. 57 : 148-158. https://doi.org/10.1111/wre.12251
  5. Atwood, D. and C. Paisley-Jones. 2017. Pesticides industry sales and usage: 2008-2012 market estimates. U.S. Environmental Protection Agency, Washington, DC, USA. pp. 4-11.
  6. Ball, D. A. and S. D. Miller. 1990. Weed seed population response to tillage and herbicide use in three irrigated cropping sequences. Weed Sci. 38 : 511-517. https://doi.org/10.1017/s0043174500051390
  7. Ball, D. A. 1992. Weed seed bank response to tillage, herbicides, and crop rotation sequence. Weed Sci. 40 : 654-659. https://doi.org/10.1017/s0043174500058264
  8. Barberi, P., A. Cozzani, M. Macchia, and E. Bonari. 1998. Sample size and composition of the weed seed bank under different management systems for continuous maize cropping. Weed Res. 38 : 319-334. https://doi.org/10.1046/j.1365-3180.1998.00098.x
  9. Bastiaansa, L., M. J. Kropffa, J. Goudriaanb and H. H. van Laara. 2000. Design of weed management systems with a reduced reliance on herbicides poses new challenges and prerequisites for modeling crop±weed interactions. Field Crops Research. 67 : 161-179. https://doi.org/10.1016/S0378-4290(00)00091-5
  10. Boydston, R. A. and A. Hang. 1995. Rapeseed (Brassica napus) green manure suppresses weeds in potato (Solanum tuberosum). Weed Technology. 9 : 669-675. https://doi.org/10.1017/S0890037X00024039
  11. Buhler, D. D., K. A. Kohler, R. L. Thompson. 2001. Weed seed bank dynamics during a five-year crop rotation. Weed Technol. 15 : 170-176. https://doi.org/10.1614/0890-037X(2001)015[0170:WSBDDA]2.0.CO;2
  12. Burnside, O. C., R. S. Moomaw, F. W. Roeth, G. A. Wicks, and R. G. Wilson. 1986. Weed seed demise in soil in weed-free corn (Zea mays) production across Nebraska. Weed Sci. 34 : 248-251. https://doi.org/10.1017/s0043174500066765
  13. Cardina, J., C. P. Herms, and D. J. Doohan. 2002. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 50 : 448-460. https://doi.org/10.1614/0043-1745(2002)050[0448:CRATSE]2.0.CO;2
  14. Chae, J. C., S. Z. Park, B. H. Kang, and S. H. Kim. Crop Cultivation (三稿 栽培學原論). Hyangmoonsa. Seoul. pp. 258-259.
  15. Chauhan, B. S., R. G. Singh, and G. Mahajan. 2012. Ecology and management of weeds under conservation agriculture: a review. Crop Protection. 38 : 57-65. https://doi.org/10.1016/j.cropro.2012.03.010
  16. Choung, J. I., J. R. Kang, J. T. Kim, J. C. Ko, N. H. Back, K. Y. Ha, S. Y. Kim, and J. W. Ahn. 2007. Study of mixed cultivation with rice and cover crops for weeds control in alpine area. Kor. J. Intl. Agri. 19(2) : 114-117.
  17. Clark, A. 2007. Managing cover crops profitably 3rd edition. Sustainable agriculture network. Maryland. pp. 98-105.
  18. Clements, D. R., D. L. Benott, S. D. Murphy, and C. J. Swanton. 1996. Tillage effects on weed seed return and seedbank composition. Weed Sci. 44 : 314-322. https://doi.org/10.1017/s0043174500093942
  19. Creamer, N. G., M. A. Bennett, B. R. Stinner, J. Cardina, and E. E. Regnier. 1996. Mechanisms of weed suppression in cover crop-based production systems. Horst science. 31 : 410-413.
  20. Davis, A. S., K. A. Renner, and K. L. Gross. 2005. Weed seedbank and community shifts in a long-term cropping systems experiment. Weed Sci. 53 : 296-306. https://doi.org/10.1614/WS-04-182
  21. Derksen D. A., G. P. Lafond, A. G. Thomas, H. A. Loeppky, and C. J. Swanton. 1993. Impact of agronomic practices on weed communities: tillage systems, Weed Sci. 41 : 409-417. https://doi.org/10.1017/s0043174500052127
  22. Dona, M., A. Balestrazzi, A. Mondoni, G. Rossi, L. Ventura, A. Buttafava, A. Macovei1, M. E. Sabatini, A. Valassi, and D. Carbonera. 2013. DNA profiling, telomere analysis and antioxidant properties as tools for monitoring ex situ seed longevity. Annals of Botany. 111 : 987-998. https://doi.org/10.1093/aob/mct058
  23. Elfstrand, S., B. Bath, A. Martensson. 2007. Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Applied soil ecology. 36 : 70-82. https://doi.org/10.1016/j.apsoil.2006.11.001
  24. Feldman, S. R., C. Alzugaray, P. S. Torres, and P. Lewis. 1997. The effect of different tillage systems on the composition of the seedbank. Weed Res. 37 : 71-76.
  25. Garrison, A. J., A. D. Miller, M. R. Ryan, S. H. Roxburgh, and K. Shea. 2014. Stacked crop rotations exploit weed-weed competition for sustainable weed management. Weed Science. 62 : 166-176. https://doi.org/10.1614/WS-D-13-00037.1
  26. Groeneveld, E., M. Kovac, and T. Wang. 1990. PEST, a general purpose BLUP package for multivariate prediction and estimation. Proceedings of the 4th World Congress on Genetics Applied to Livestock Production, Edinburgh. Vol. 13.
  27. Gulden, R. H. and S. J. Shirtliffe. 2009. Weed Seed Banks: Biology and Management. Prairie Soils & Crops Journal. 2 : 46-52.
  28. Ha, H. Y., K. S. Hwang, S. J. Suh, I. Y. Lee, Y. J. Oh, J. Park, J. K. Choi, E. J. Kim, S. H. Cho, O. D. Kwon, I. B. Im, S. K. Kim, D. G. Seong, Y. J. Chung, W. J. Lee, C. S. Kim, J. Lee, J. E. Park, and K. W. Park. 2014. A survey of weed occurrence on paddy field in Korea. Weed Turf. Sci. 3(2) : 71-77. https://doi.org/10.5660/WTS.2014.3.2.71
  29. Haramoto, E. R. and E. R. Gallandt. 2004. Brassica cover cropping for weed management : A review. Renewable Agriculture and Food Systems. 19(4) : 187-198. https://doi.org/10.1079/rafs200490
  30. Haring, S. C. and M. L. Flessner. 2018. Improving soil seed bank management. Pest Manag. Sci. 74 : 2412-2418. https://doi.org/10.1002/ps.5068
  31. Harker, K. N. and O'Donovan, J. T. 2013. Recent weed control, weed management, and integrated weed management. Weed Technology. 27 : 1-11. https://doi.org/10.1614/WT-D-12-00109.1
  32. Heap, I. The International Herbicide-Resistant Weed Database. URL http://weedscience.org (updated July 25, 2021.).
  33. Holst, N., I. A. Rasmussen, and L. Bastiaans. 2007. Field weed population dynamics: a review of model approaches and applications. Weed Res. 47 : 1-14. https://doi.org/10.1111/j.1365-3180.2007.00534.x
  34. Honda, Y. 2008. Ecological correlations between the persistence of the soil seed bank and several plant traits, including seed dormancy. Plant Ecol. 196 : 301-309. https://doi.org/10.1007/s11258-007-9360-3
  35. Hossain, M. and M. Begum. Soil weed seed bank: Importance and management for sustainable crop production. J. Bangladesh Agric. Univ. 13 : 221-228. https://doi.org/10.3329/jbau.v13i2.28783
  36. Jarry, M., M. Khaladi, M. Hossaert-McKey, and D. McKey. 1995. Modeling the population dynamics of annual plants with seed bank and density dependent effects. Acta Biotheoretica. 43 : 53-65. https://doi.org/10.1007/BF00709433
  37. Jeon, S. H., S. H. Lee, S. Y. Oh, Y. J. Kim, K. M. Kim, S. H. Kim, J. B. Hwang, S. T. Yoon, and S. I. Shim. 2011. Effects of hairy vetch and rye cover on weed occurrences and minor cereal growth. Korean J. Crop Sci. 56(2) : 136-139.
  38. Kim, J. I., K. H. Rhee, Y. B. Oh, Y. J. Oh, and J. K. Lee. 1993. Crop combinations and rotation years for paddy-upland cropping system in middle part of Korea. J. crop Sci. 38(4) : 304-311.
  39. Kim, K. U., D. H. Shim, S. J. Park, J. W. Jeong, and S. S. Hwang. 1995. Weed occurrence and control at soybean cultrue in rice-soybean rorated paddy field. Kor. J. Weed Sci. 15(4) : 313-320.
  40. Koocheki, A., M. Nassiri, L. Alimoradi, and R. Ghorbani. 2009. Effect of cropping systems and crop rotations on weeds. Agron. Sustain. 29 : 401-408. https://doi.org/10.1051/agro/2008061
  41. Korea rural economic institute. 2021. Agricultural outlook 2021 I. Naju. pp. 223-225.
  42. Ku, Y. C., K. Y. Seong, D. Y. Song, S. B. Lee, and I. P. Huh. 1997. Change of weed community in paddy-upland rotation. Kor. J. Weed Sci. 17(2) : 157-162.
  43. Ku, Y. C., S. H. Yun, and S. H. Park. 1985. Difference in weed population as affected by a cropping pattern in paddy field. Kor. J. Weed Sci. 5(2) : 137-142.
  44. Lee, B. M., H. J. Jee, K. Y. Rye, J. H. Park and J. H. Lee. 2008. Effects of rye sowing dates on weed occurrence in organic soybean field. Kor. J. Weed Sci. 28(2) : 111-116.
  45. Lee, B. M., J. H. Lee, Y. J. Oh, S. B. Lee, C. K. Kang, H. J. Jee, J. H. Lee. 2010. Weed occurrence as influenced by living mulch, soil incorporation and cutting treatment of rye in organic soybean field. Kor. J. Weed Sci. 30(2) : 164-170. https://doi.org/10.5660/KJWS.2010.30.2.164
  46. Lee, I. Y., Y. J. Oh, S. H. Hong, J. K. Choi, S. J. Heo, C. Y. Lee, K. S. Hwang, K. W. Park, S. H. Cho, O. D. Kwon, I. B. Im, S. K. Kim, D. G. Seong, Y. J. Chung, C. S. Kim, J. Lee, H. A. Seo, and H. M. Jang. 2015. Weed flora diversity and composition on upland field of Korea. Weed Turf. Sci. 4(3) : 159-175. https://doi.org/10.5660/WTS.2015.4.3.159
  47. Lee, J. H., B. M. Lee, S. I. Shim, Y. Lee, and H. J. Jee. 2011. Effects of crimson clover, hairy vetch, and rye residue mulch on weed occurrence, soybean growth, and yield in soybean fields. Kor. J. Weed Sci. 31(2) : 167-174. https://doi.org/10.5660/KJWS.2011.31.2.167
  48. Lee, S. M., B. M. Lee, Y. Lee, Y. H. Lee, J. K. Sung, Y. Lee, H. B. Yun, H. S. Choi. 2012. Effect of green-manure crop rotation on weed control. Korean J. Org. Agric. 20(2) : 201-209.
  49. Liebman, M. and E. Dyck. 1993. Crop rotation and intercropping strategies for weed management. Ecological Applications. 3(1) : 92-122. https://doi.org/10.2307/1941795
  50. Lybecker, D. W., E. E. Schweizer, and R. P. King. 1991. Weed management decisions in corn based on bioeconomic modeling. Weed Sci. 39(1) : 124-129. https://doi.org/10.1017/s0043174500057982
  51. Mesgaran, M. B., H. R. Mashhadi, E. Zand, and H. M. Alizadeh. 2007. Comparison of three methodologies for efficient seed extraction in studies of soil weed seedbanks. European Weed Research Society Weed Research. 47 : 472-478.
  52. Nagabhushana, G. G., A. D. Worsham, and J. P. Yenish. 2001. Allelopathic cover crops to reduce herbicide use in sustainable agriculture systems. Allelopathy J. 8 : 133-146.
  53. Ngouajioa, M. and H. Mennanb. 2005. Weed populations and pickling cucumber(Cucumis sativus) yield under summer and winter cover crop systems. Crop Prot. 23 : 521-526. https://doi.org/10.1016/j.cropro.2004.10.004
  54. Nichols, V., N. Verhulst, R. Cox, and B. Govaerts. 2015. Weed dynamics and conservation agriculture principles: A review. Field Crops Research. 183 : 56-68. https://doi.org/10.1016/j.fcr.2015.07.012
  55. Nishida, M., H. Sekiya, and K. Yoshida. 2013. Status of paddy soils as affected by paddy rice and upland soybean rotation in northeast Japan, with special reference to nitrogen fertility. Soil Science and Plant Nutrition. 59 : 208-217. https://doi.org/10.1080/00380768.2012.762588
  56. Noh, T. K. and D. S. Kim. 2018. Weed research using plant image science. Weed Turf. Sci. 7(4) : 285-296. https://doi.org/10.5660/WTS.2018.7.4.285
  57. Park, C. K., J. M. Lee, S. B. Song, H. T. Kim, J. D. Sung, S. B. Pae, and Y. H. Kwack. 1998. Weed occurrence on different cropping years at soybean culture in paddy-upland rotated field. RDA. J. Crop Protec. 40(2) : 135-142.
  58. Putnam, A. R. and J. DeFrank. 1983. Use of phytotoxic plant residues for selective weed control. Crop Protection. 2 : 173-181. https://doi.org/10.1016/0261-2194(83)90042-X
  59. Roberts, H.A. 1968. The changing population of viable weed seeds in an arable soil. Weed Res. 8 : 253-256. https://doi.org/10.1111/j.1365-3180.1968.tb01428.x
  60. Rural development administration. 2009. Study on effective utilization of Chinese milkvetch as green manure crop for environmental friendly rice prodution. Suwon. pp. 5-16.
  61. Rural development administration. 2010. Hairy vetch. Standard farming textbook-175. Suwon. pp. 44-46.
  62. Schweizer, E. E. and R. L. Zimdahl. 1984. Weed seed decline in irrigated soil after six years of continuous corn (Zea mays) and herbicides. Weed Sci. 32 : 76-83. https://doi.org/10.1017/s0043174500058549
  63. Seo, J. H. and H. J. Lee. 1998. Study on no-tillage silage corn production with legume hairy vetch (Vicia Villosa Roth) cover II. Changes of yield and nitrogen uptake of corn by N fertilizer and hairy vetch cover. J. Korean Grassl. Sci. 18(2) : 123-128.
  64. Statistics Korea. 2020. Changes in the structure of agriculture in terms of statistics. The press release. Daejeon. p. 13.
  65. Storkey, J., J. Helps, R. Hull, A. E. Milne, and H. Metcalfe. 2021. Defining integrated weed management : A novel conceptual framework for models. Agronomy. 11(4) : 747. https://doi.org/10.3390/agronomy11040747
  66. Swanton, C. J., A. Shrestha, S. Z. Knezevic, R. C. Roy, and B. R. Ball-Coelho. 2000. Influence of tillage type on vertical weed seedbank distribution in a sand soil. Can. J. Plant Sci. 80 : 455-457. https://doi.org/10.4141/P99-020
  67. Takahiro, O. 1992. Crop rotation technology theory. Toyoyama Fishing Village Cultural Association. 256-262.
  68. Teasdale, J. R. and Daughtry, C. S. T. 1993. Weed suppression by live and desiccated hairy vetch (Vicia villosa). Weed Science. 41(2) : 207-212. https://doi.org/10.1017/s0043174500076074
  69. Thompson, K. and J. P. Grime. 1979. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 67 : 893-921. https://doi.org/10.2307/2259220
  70. Thorp, K. and L. Tian., 2004. A review on remote sensing of weeds in agriculture, Precision Agriculture. 5(5) : 477-508. https://doi.org/10.1007/s11119-004-5321-1
  71. Webster, T. M., J. Cardina, and A. D. White. 2003. Weed seed rain, soil seedbanks, and seedling recruitment in no-tillage crop rotations. Weed Sci. 51 : 569-575. https://doi.org/10.1614/0043-1745(2003)051[0569:WSRSSA]2.0.CO;2
  72. Weisberger, D., V. Nichols, and M. Liebman. 2019. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS ONE 14(7): e0219847. https://doi.org/10.1371/journal.pone.0219847
  73. Winkle, M. E., J. R. C. Leavitt, and O. C. Burnside. 1981. Effects of weed density on herbicide absorption and bioactivity. Weed Sci. 29 : 405-409. https://doi.org/10.1017/S0043174500039904
  74. Yoon, S. T., E. K. Je, Y. J. Kim, I. H. Jeong, T. K. Han, T. Y. Kim, Y. S. Cho, and E. S. Yun. 2014. Survey and evaluation of paddy-upland rotation production system. Korean J. Int. Agric. 26(4) : 531-543. https://doi.org/10.12719/KSIA.2014.26.4.531
  75. Yu, J. B., S. T. Yoon, J. Yang, and M. H. Ye. 2017. A comparison of the disease and insect damage, and growth characteristics of sorghum and foxtail millet between rotational upland and continuously cropped upland field in order to identify the optimum varieties for an organic paddy-upland rotation system. Korean J. Crop Sci. 62(3) : 224-232. https://doi.org/10.7740/KJCS.2017.62.3.224