Browse > Article
http://dx.doi.org/10.13103/JFHS.2022.37.5.356

Antioxidant and Antimicrobial Activities of Various Citrus Peels  

Choi, Hyeonjeong (Division of Food Analysis, Jeollabukdo Institute of Health & Environment Research)
Kim, Yong-Suk (Department of Food Science and Technology, Jeonbuk National University)
Publication Information
Journal of Food Hygiene and Safety / v.37, no.5, 2022 , pp. 356-363 More about this Journal
Abstract
To investigate the functional activity of different citrus fruit peels, antioxidant compounds in 70% ethanol extracts of mandarin, lemon, orange, and grapefruit peel powders were identified, and antioxidant and antibacterial activities were quantitated. Mandarin peel contained the highest content of total phenolic compounds and total flavonoid substances (21.46±0.12 mg GAE/g and 11.57±0.05 mg RE/g, respectively). The total phenolic compound content of the three other citrus fruits was 14.16±0.18-18.44±0.07, and their total flavonoid content was 5.51±0.10-7.46±0.09 mg RE/g. DPPH radical scavenging activity was the highest in lemon peel (87.64±0.21%), and mandarin peel displayed the best antioxidant activity with respective ABTS radical scavenging activity and FRAP measurements of 43.20±0.61% and 78.82±1.06 mM TE/g. Grapefruit peel antimicrobial activity increased with treatment time, and was the most potent among the four tested citrus species, inhibiting Staphylococcus aureus by about 4.05 log cycle. These findings demonstrate that mandarin and grapefruit peel can be used to prevent oxidation, improve food storage capabilities, and potentially preserve food quality.
Keywords
Citrus; Antioxidant activity; Antimicrobial activity; Mandarin; Grapefruit;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Park, M.J., Kim, G.H., The antioxidative and antibrowning effects of citrus peel extracts on fresh-cut apples. Korean J. Food Sci., 45, 598-604 (2013).   DOI
2 Mehmood, T., Khan, M.R., Shabbir, M.A., Zia, M.A., Phytochemical profiling and HPLC quantification of citrus peel from different varieties. Progr. Nutr., 20, 279-288 (2018).
3 Huang, D., Ou, B., Prior, R.L., The chemistry behind antioxidant capacity assays. J. Agri. Food Chem., 53, 1841-1856 (2005).   DOI
4 Hocman, G., Chemoprevention of cancer: Phenolic antioxidants (BHT, BHA). Int. J. Biochem., 20, 639-651 (1988).   DOI
5 Rhim, T.J., Choi, M.Y., Antimicrobial effects on food-borne pathogens and the antioxidant activity of Torreya nucifera extract. Korean J. Comm. Living Sci., 26, 697-705 (2015).   DOI
6 Korea Agricultural Statistics Service, (2021, April 15). https://kosis.kr/statHtml/statHtml.do?orgId=114&tblId=DT_114_2012_S0077&vw_cd=MT_ZTITLE&list_id=K1_3&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=MT_ZTITLE&path=%252FstatisticsList%252FstatisticsListIndex.do
7 United States Departments of Agriculture National Agricultural Statistics Service (USDA NASS), (2019, December 27). National Agricultural Statistics Service Florida Field Office. from: https://www.nass.usda.gov/Statistics_by_State/Florida/Publications/Citrus/Citrus_Forecast/index.php.
8 Li, S., Lo, C.Y., Ho, C.T., Hydroxylated polymethoxy-flavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J. Agric. Food Chem., 54, 4176-4185 (2006).   DOI
9 Zou, Z., Xi, W., Hu, Y., Nie, C., Zhou, Z., Antioxidant activity of citrus fruits. Food Chem., 196, 885-896 (2016).   DOI
10 Dhiman, A., Nanda, A., Ahmad, S., Narasimhan, B., In vitro antimicrobial status of methanolic extract of Citrus sinensis Linn. fruit peel. Chron. Young Scient., 3, 204-208 (2012).   DOI
11 Codoner-Franch, P., Valls-Belles, V., Citrus as functional foods. Curr. Top Nutraceutical Res., 8, 173-184 (2010).
12 Kim, E.J., Lee, H.J., Kim, H.J., Nam, H.S., Lee, M.K., Kim, H.Y., Lee, J.H., Kang, Y.S., Lee, J.O., Kim, H.Y., Comparison of colorimetric methods for the determination of flavonoid in propolis extract product. Korean J. Food Sci. Technol., 37, 918-921 (2005).
13 Imai, J., Ide, N., Nagae, S., Moriguchi, T., Matsuura, H., Itakura, Y., Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Plant Med., 60, 417-420 (1994).   DOI
14 Choi, M.H., Kim, K.H., Yook, H.S., Antioxidant and antibacterial activity of premature mandarin. J. Korean Soc. Food Sci. Nutr., 48, 622-629 (2019).   DOI
15 Boo, H.O., Lee, H.H., Lee, J.W., Hwang, S.J., Park, S.U., Different of total phenolics and flavonoids, radical scavenging activities and nitrite scavenging effects of Momordica charantia L. according to cultivars. Korea J. Med. Crops, 17, 15-20 (2009).
16 Korea Food Industry Association, 2019. Food Code. KyungSung Munhwasa, Seoul, Korea. pp. 313-359.
17 Folin, O., Dennis, W., On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem., 12, 239-243 (1912).   DOI
18 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26, 1231-1237 (1999).   DOI
19 Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Hawkins Byrne, D., Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Comp. Anal., 19, 669-675 (2006).   DOI
20 Ito, N., Fukushima, S., Tsuda, H., Carcinogenicity and modification of the carcinogenic response by BHA, BHT, and other antioxidants. Crit. Re. Toxicol., 15, 109-150 (1985).   DOI
21 Lee, C.R., Kim, Y.J., Lee, K.J., Dietary supplementation of citrus and fermented citrus by-product for Juvenile red seabream Pagrus major at low water temperature. Korean J. Fish Aquat. Sci., 48, 4543-458 (2015).
22 Park, G.H., Lee, S.H., Kim, H.Y., Jeong, H.S., Kim, E.Y., Yun, Y.W., Nam, S.Y., Lee, B.J., Comparison in antioxidant effect of four citrus fruits. J. Food Hyg. Saf., 26, 355-360 (2011).
23 Khan, R.A., Mallick, N., Feroz, Z., Anti-inflammatory effects of Citrus sinensis L., Citrus paradisi L. and their combinations. Pak. J. Pharm. Sci., 29, 843-852 (2016).
24 Yun, H.Y., Lim, S.J., Park, H.J., Shin, Y.J., Correlation between antioxidant compounds and activities of 'Hibiscus sabdariffa' teas from different origins. J. East Asian Soc. Diet Life, 28, 40-46 (2018).   DOI
25 Kim, H.E., Kim, Y.S., Inhibitory effects of cinnamon, clove and lemongrass essential oils against biofilm formation by food poisoning bacteria. J. Food Hyg. Saf., 36, 430-439 (2021).   DOI
26 Korea Food Industry Association, 2019. Food Code. KyungSung Munhwasa, Seoul, Korea. pp. 544-547.
27 SAS Institute, Inc., 1990. SAS User's Guide. Statistical Analysis Systems Institutes, Cary, NC, USA.
28 Sinclair, W.B., 1972. The Grapefruit: Its Composition, Physiology, and Products. University of California, Berkeley, CA, USA. pp.223-239.
29 Nam, S.Y., Lee, J.Y., Ko, J.S., Kim, J.B., Jang, H.J., Kim, H.R., Lee, Y.M., Changes in antioxidant and antimicrobial activities of Schizandra chinensis Baillon under different solvent extraction. J. Korean Soc. Int. Agric., 26, 513-518 (2014).   DOI
30 Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M., Morelli, I., Antioxidant principles from Bauhinia tarapotensis. J. Natural Prod., 64, 892-895 (2001).   DOI
31 Cho, D.J., Hur, J., Kim, H.Y., Influencing factors in drying and shrinking characteristics of root vegetables. Korean J. Food Sci. Technol., 21, 203-211 (1989).
32 Hwang, J.H., Park, K.Y., Oh, Y.S., Lim, S.B., Phenolic compound content and antioxidant activity of citrus peels. J. Korean Soc. Food Sci. Nutr., 42, 153-160 (2013).   DOI
33 Cowan, M.M., Plant products as antimicrobial agents. Clin. Microbiol. Rev., 12, 564-582 (1999).   DOI
34 Eun, J.B., Jung, Y.M., Woo, G.J., Identification and determination of dietary fibers and flavonoids in pulp and peel of Korean tangerine (Citrus aurantium var.). Korean J. Food Sci., 28, 371-377 (1996).
35 Murunga, A.N., Miruka, D.O., Driver, C., Nkomo, F.S., Cobongela, S.Z., Owira, P.M., Grapefruit derived flavonoid naringin improves ketoacidosis and lipid peroxidation in type 1 diabetes rat model. PLoS One. 11 (2016).
36 Ortuno, A.A., Baidez, P., Gomez, M.C., Arcas, I., Porras, A.G., Del Rio, J.A., Citrus paradisi and Citrus sinensis flavonoids: Their influence in the defence mechanism against Penicillium digitatum. Food Chem., 98, 351-358 (2006).   DOI
37 Halliwell, B., Aeschbach, R., Loliger, J., Aruoma, O.I., The characterization of antioxidants. Food Chem. Toxicol., 33, 601-617 (1995).   DOI
38 Boo, H.J., Chun, J.Y., Kim, J.A., Quality characteristics and antioxidative activity of different parts of bitter melon (Momordica charantia L.). Korean Soc. Food Sci. Nutr., 48, 418-423 (2019).   DOI
39 Azman, N.F.I.N., Azlan, A., Khoo, H.E., Razman, M.R., Antioxidant properties of fresh and frozen peels of citrus species. Curr. Res. Nutr. Food Sci., 7, 331-339 (2019).   DOI
40 Ghasemi, K., Ghasemi, Y., Ebrahimzadeh, M.A., Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak. J. Pharm. Sci., 22, 277-281 (2009).
41 Shin, J.H., Lee, S.J., Seo, J.K., Sung, N.J., Antioxidant activity of hot-water extract from Yuza (Citrus junos SIEB ex TANAKA) peel. J. Life Sci., 18, 1745-1751 (2008).   DOI
42 Wang, M., Meng, D., Zhang, P., Wang, X., Du, G., Brennan, C., Zhao, H., Antioxidant protection of nobiletin, 5-demethylnobiletin, tangeretin, and 5-demethyltangeretin from citrus peel in Saccharomyces cerevisiae. J. Agric. Food Chem., 66, 3155-3160 (2018).   DOI
43 De Moraes Barros, H.R., De Castro Ferreira, T.A.P., Genovese, M.I., Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. Food Chem., 134, 1892-1898 (2012).   DOI
44 Ali, J., Das, B., Saikia, T., Antimicrobial activity of lemon peel (Citrus limon) extract. Int. J. Curr. Pharm. Res., 9, 79-82 (2017).
45 Corbo, M.R., Speranza, B., Filippone, A., Granatiero, S., Conte, A., Sinigaglia, M., Del Nobile, M.A., Study on the synergic effect of natural compounds on the microbial quality decay of packed fish hamburger. Inter. J. Food Microb., 127, 261-267 (2008).   DOI
46 Negi P., Jayaprakasha, G., Antibacterial activity of grapefruit (Citrus paradisi) peel extracts. Eur. Food Res. Technol., 213, 484-487 (2001).   DOI