• Title/Summary/Keyword: three dimensional shape

Search Result 1,471, Processing Time 0.047 seconds

A Study on Machining Distortion of Airfoil Effected by Fixture and Process (에어포일 기계가공 변형 연구 : 지그와 가공단계의 영향)

  • Ra, Kyeong-Woon;Ji, Seong-Bum;Jo, Yeong-Jin;Park, Je-Hong;Seo, Sang-Won;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.465-470
    • /
    • 2014
  • Thin and wide airfoils are difficult to be machined precisely because they are deformed during and after machining processes. This paper presents the results of the airfoil deformation measured by three-dimensional (3D) scanning equipment. It also discusses the influences of fixture and the machining process on the distortion of the thin airfoil. The simple fixture bended the thin airfoil to a U-shape at the first process, and the vacuum fixture decreased the distortion of the machined airfoil at the second process. The long and thin airfoil supported by two points was buckled during the machining at its two end-regions at the third process. Results from this study suggest that use of vacuum fixture decreases the machining distortion of thin and wide airfoils.

A Study on the Necktie Design to Day Marketing using CAD - Focused on Christmas - (CAD를 활용한 데이 마케팅에 의한 넥타이 디자인 연구 - 크리스마스를 중심으로 -)

  • Chu, Mi-Kyung
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.4
    • /
    • pp.640-654
    • /
    • 2010
  • The purpose of this study is to design neckties that are motivated by Christmas symbol images that have been known to public most widely in the basis of Day marketing so as to develop the competitive commodities closed to consumers' emotion in the fashion industry. As a method of this study were to use Adobe Illustrator CS2, which is one of the vector graphic programs, to present the motif design such as Santa Claus, trees, presents and letters among Christmas symbols, and are to apply to neckties by giving a change with striped pattern, all over pattern and one point pattern. The results are as follows; Firstly, Santa Claus image was expressed by color contrast with red and white, which was perceived by red, green and white that are mostly used in Christmas. Secondly, tree images are expressed abstractly with color contrast where red and green are contrasted, and color way change was given for symbol color of Christmas. Third, in the image of gift, the image of share and image of colorfulness were considered for expression by making motifs of three dimensional hexahedron shape. Fourthly, in the image of type, motif was expressed by giving a change in horizontal and vertical writing types.

Numerical Optimization of A Multi-Blades Centrifugal Fan For High-Efficiency Design (원심다익송풍기의 고효율 설계를 위한 수치최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.385-390
    • /
    • 2003
  • Shape of a multi-blades centrifugal fan is optimized by response surface method based on three-dimensional Navier-Stokes analysis. For numerical analysis, Reynolds-averaged Wavier-Stokes equations with standard $k-{\varepsilon}$ turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Optimizations with and without constraints are carried out. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. The correlation of efficiency with relative size of inactive zone at the exit of impeller is discussed as well as with average momentum fluxes in the scroll.

  • PDF

A Strategy for Developing Service Model Toward Industrial Innovation (산업 혁신을 위한 서비스모델 개발 전략에 관한 연구)

  • Kwon, Hyeog-In;Joo, Hi-Yeob;Ryu, Gui-Jin;Kim, Man-Jin
    • Journal of Information Technology Services
    • /
    • v.9 no.4
    • /
    • pp.231-242
    • /
    • 2010
  • The emergence of convergence has been the cause of development of the industry more complex and difficult by continually changing business environment and the destruction of the business area. The government-initiatives approach shows the limits to foster the new industries in needs of service-oriented ecosystem. In this study, we propose the service model as service-based approach for the development of new industries derived through the convergence inter-industry. While business model is defined based on the company's temporary and piecemeal activities, service model is the concept of dynamic and continuous that includes national, industrial, corporate level. In order to derive the service model, to identify current problems and issues with the public and the private sector is first. Then design the roadmap for the implementation of the desired shape through strategy from optimal rationality and long-term strategy. In this study, we define a service model, and consider when establishing a service model for three dimensional(national, industrial, corporate level) through analyzed by 3Level Service Model. And we also consider characteristics of the service model and approach, present the case of 'New Transit Card Services in Seoul'.

Flow Characteristics of An Atmospheric Pressure Plasma Torch

  • Moon, Jang-H.;Kim, Youn-J.;Han, Jeon-G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.69-73
    • /
    • 2003
  • The atmospheric pressure plasma is regarded as an effective method for surface treatments because it can reduce the period of process and doesn't need expensive vacuum apparatus. The performance of non-transferred plasma torches is significantly depended on jet flow characteristics out of the nozzle. In order to produce the high performance of a torch, the maximum discharge velocity near an annular gap in the torch should be maintained. Also, the compulsory swirl is being produced to gain the shape that can concentrate the plasma at the center of gas flow. In this work, the distribution of gas flow that goes out to atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric pressure plasma torch which can present the optimum design of the torch. Numerical analysis is carried out with various angles of an inlet flow velocity. Especially, three-dimensional model of the torch is investigated to estimate swirl effect. We also investigate the stabilization of plasma distribution. For analyzing the swirl in the plenum chamber and the flow distribution, FVM (finite volume method) and SIMPLE algorithm are used for solving the governing equations. The standard k-model is used for simulating the turbulence.

3D Automatic Mesh Generation Scheme for the Boundary Element Method (경계요소법을 위한 3차원 자동요소분할)

  • Lee, H.B.;Lee, S.H.;Kim, H.S.;Lee, K.S.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.935-937
    • /
    • 1993
  • This paper presents a three dimensional automatic mesh generation scheme for the boundary element method, and this scheme can be applicable to practical problems of complex shape. The geometry of the problem is expressed as an assemblage of linear Coon's surfaces, and each surface is made up of four edge curves which are defined in the form of a parametric function. Curves are automatically segmented according to their characteristics. With these segments of curves, interior points and triangular mesh elements are generated in the parametric plane using Lindholm's method, and then their projection on the real surface forms the initial mesh. The refinement of initial mesh is performed so that the discrete triangular planes are close to the real continuous surfaces. The bisection method is used for the refinement. Finally, interior points in the refined mesh are rearranged so as to make each element be close with an equilateral triangle. An attempt has been made to apply the proposed method to a DY(Deflection Yoke) model.

  • PDF

Development of the Interfacial Area Concentration Measurement Method Using a Five Sensor Conductivity Probe

  • Euh, Dong-Jin;Yun, Byong-Jo;Song, Chul-Hwa;Kwon, Tae-Soon;Chung, Moon-Ki;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.433-445
    • /
    • 2000
  • The interfacial area concentration (IAC) is one of the most important parameters in the two-fluid model for two-phase flow analysis. The IAC can be measured by a local conductivity probe method that uses the difference of conductivity between water and air/steam. The number of sensors in the conductivity probe may be differently chosen by considering the flow regime of two-phase flow. The four sensor conductivity probe method predicts the IAC without any assumptions of the bubble shape. The local IAC can be obtained by measuring the three dimensional velocity vector elements at the measuring point, and the directional cosines of the sensors. The five sensor conductivity probe method proposed in this study is based on the four sensor probe method. With the five sensor probe, the local IAC for a given referred measuring area of the probe can be predicted more exactly than the four sensor probe. In this paper, the mathematical approach of the five sensor probe method for measuring the IAC is described, and a numerical simulation is carried out for ideal cap bubbles of which the sizes and locations are determined by a random number generator.

  • PDF

Numerical simulation of hot embossing filling (핫엠보싱 충전공정에 관한 수치해석)

  • Kang T. G.;Kwon T. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

Constructing a Three-Dimensional Endothelial Cell Layer in a Circular PDMS Microchannel

  • Choi, Jong Seob;Piao, Yunxian;Kim, Kyung Hoon;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.274.2-274.2
    • /
    • 2013
  • We described a simple and efficient fabrication method for generating microfluidic channels with a circular-cross sectional geometry by exploiting the reflow phenomenon of a thick positive photoresist. Initial rectangular shaped positive photoresist micropatterns on a silicon wafer, which were fabricated by a conventional photolithography process, were converted into a half-circular shape by tuning the temperature to around $105^{\circ}C$. Through optimization of the reflow conditions, we could obtain a perfect circular micropattern of the positive photoresist, and control the diameter in a range from 100 to 400 ${\mu}m$. The resultant convex half-circular photoresist was used as a template for fabricating a concave polydimethylsiloxane (PDMS) through a replica molding process, and a circular PDMS microchannel was produced by bonding two half-circular PDMS layers. A variety of channel dimensions and patterns can be easily prepared, including straight, S-curve, X-, Y-, and T-shapes to mimic an in vivo vascular network. To inform an endothelial cell layer, we cultured primary human umbilical vein endothelial cells (HUVECs) inside circular PDMS microchannels, and demonstrated successful cell adhesion, proliferation, and alignment along the channel.

  • PDF

3-D Imaging in a Chaotic Micromixer Using Confocal Laser Scanning Microscopy (CLSM) (공초점 현미경을 이용한 마이크로믹서 내부의 3차원 이미지화)

  • Kim, Hyun-Dong;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.96-101
    • /
    • 2006
  • 3-D visualization using confocal laser scanning microscopy (CLSM) in a chaotic micromixer was performed as a reproduction experiment and the feasibility of 3-0 imaging technique in the microscale was confirmed. For diagonal micromixer (DM) and two types of staggered herringbone micromixers (SHM) designed by Whitesides et al., to verify the evolution of mixing, cross sectional images are reconstructed at the end of every cycle. In a DM, clockwise rotational flow motion generated by diagonal ridges placed on the floor of micromixer is observed and this motion makes the fluid commingle. On the contrary, there are two rotational flow structures in the SHM and the centers of rotation exchange their position each other every half cycle because of the V shape of ridges varying their orientation every half cycle. Local rotational flow and local extensional flow generated by the complicate ridge pattern make the flow be chaotic and accelerate the mixing of fluid. The dominant parameter that influences on the mixing characteristic of SHM is not the length of micromixer but the number of ridges under the same flow configurations.

  • PDF