• Title/Summary/Keyword: thiosulfate oxidation

Search Result 15, Processing Time 0.026 seconds

Thiosulfate Oxidation and Mixotrophic Growth of Methylobacterium goesingense and Methylobacterium fujisawaense

  • Anandham, R.;Indiragandhi, P.;Madhaiyan, M.;Chung, Jong-Bae;Ryu, Kyoung-Yul;Jee, Hyeong-Jin;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.17-22
    • /
    • 2009
  • The mixotrophic growth with methanol plus thiosulfate was examined in nutrient-limited mixotrophic condition for Methylobacterium goesingense CBMB5 and Methylobacterium fujisawaense CBMB37. Thiosulfate oxidation increased the growth and protein yield in mixotrophic medium that contained 150mM methanol and 20mM sodium thiosulfate, at 144 h. Respirometric study revealed that thiosulfate was the most preferable reduced inorganic sulfur source, followed by sulfite and sulfur. M. goesingense CBMB5 and M. fujisawaense CBMB37 oxidized thiosulfate directly to sulfate, and intermediate products of thiosulfate oxidation such as polythionates, sulfite, and sulfur were not detected in spent medium and they did not yield positive amplification for tested soxB primers. Enzymes of thiosulfate oxidation such as rhodanese and sulfite oxidase activities were detected in cell-free extracts of M. goesingense CBMB5, and M. fujisawaense CBMB37, and thiosulfate oxidase (tetrathionate synthase) activity was not observed. It indicated that both the organisms use the "non-S4 intermediate" sulfur oxidation pathway for thiosulfate oxidation. It is concluded from this study that M. goesingense CBMB5, and M. fujisawaense CBMB37 exhibited mixotrophic metabolism in medium containing methanol plus thiosulfate and that thiosulfate oxidation and the presence of a "Paracoccus sulfur oxidation" (PSO) pathway in methylotrophic bacteria are species dependant.

한.러 생명공학 공동 심포지움 참관기

  • 이상기
    • The Microorganisms and Industry
    • /
    • v.20 no.3
    • /
    • pp.70-73
    • /
    • 1994
  • Effects of 13 organic compounds including glucose, fructose, xylose, glutamate, succinate, malate, glycine, lactate, acetate, pyruvate, citrate, formate and cis-aconitate on the oxidation of thiosulfate and the availability of these compounds as the substrate for the respiration by Thiobacillus ocncretivorus, which is known to be an obligated autotroph, were studied. Malate nad glycine at 0.5 per cent concentration nearly doubled the thiosulfate oxidation compared to the control. No other organic substances enhanced the thiosulfate oxidation compared to the control. No other organic substances enhanced the thiosulfate oxidation. Moreover, some 30 to 40 per cent decrease was recorded by fructose, sulfate-salts medium, some 30 to 40 per cent decrease was recorded by fructose, citrate, xylose, malate, flucose, glutamate and succinate. No respiration could occur when formate and pyruvate were supplied as the substrate for respiration. But it was obvious that flucose, fructose, xylose, glutamate, malate, citrate and succinate could be used as the substrate for respiration to some extent, regarding the fact that some increase in respiration rates could be recorded compared to the result from the salts medium, where neither thiosulfate nor orgnic compounds were added. Thus, it was postulated that this organism could possibly be converted into mixotroph or hetrotroph if appropriate conditions could be prepared.

  • PDF

Effects of organic compounds on the respiration of thiobacillus concretivorus Parker (Thiobacillus concretivorus Parker의 호흡에 미치는 유기물의 영향)

  • 하영칠;주동기
    • Korean Journal of Microbiology
    • /
    • v.10 no.4
    • /
    • pp.167-174
    • /
    • 1972
  • Effects of 13 organic compounds including glucose, fructose, xylose, glutamate, succinate, malate, glycine, lactate, acetate, pyruvate, citrate, formate and cis-aconitate on the oxidation of thiosulfate and the availability of these compounds as the substrate for the respiration by Thiobacillus ocncretivorus, which is known to be an obligated autotroph, were studied. Malate nad glycine at 0.5 per cent concentration nearly doubled the thiosulfate oxidation compared to the control. No other organic substances enhanced the thiosulfate oxidation compared to the control. No other organic substances enhanced the thiosulfate oxidation. Moreover, some 30 to 40 per cent decrease was recorded by fructose, sulfate-salts medium, some 30 to 40 per cent decrease was recorded by fructose, citrate, xylose, malate, flucose, glutamate and succinate. No respiration could occur when formate and pyruvate were supplied as the substrate for respiration. But it was obvious that flucose, fructose, xylose, glutamate, malate, citrate and succinate could be used as the substrate for respiration to some extent, regarding the fact that some increase in respiration rates could be recorded compared to the result from the salts medium, where neither thiosulfate nor orgnic compounds were added. Thus, it was postulated that this organism could possibly be converted into mixotroph or hetrotroph if appropriate conditions could be prepared.

  • PDF

Isolation and Characterization of a New Hydrogen Sulfide-Oxidizing Bacterium Thiobacillus Sp. (황화수소 산화세균인 새로운 Thiobacillus sp.의 분리 및 특성)

  • Cha, Jin-Myeong;Lee, In-Hwa
    • Korean Journal of Microbiology
    • /
    • v.32 no.4
    • /
    • pp.252-257
    • /
    • 1994
  • A new hydrogen sulfide-oxidation bacterium, Thiobacillus sp. was isolated from waste coal mine water around Hawsun in Chunnam province. The isolate was motile gram-negative rod shape, formed spore and grew up to be aerobically facultative chemolithotroph by using energy released from the oxidation of reduced inorganic sulfur compounds. It could assimilate various kinds of organic compounds and grew well upon thiosulfate-supplemented basal medium. To the lelvel of 32 mM in thiosulfate concentration, thiosulfate in itself was utilized as energy source for growth. However, from those of the higher concentration than 32 mM, thiosulfate functioned specifically as the substrate inhibitor rather than as the energy source. It was found that the optimum thiosulfate concentration for growth was 32 mM. The G+C content of the DNA was 65.0 mol%. The isolate had 16 : 1 + 17$_{cyc}$, 16 : 0 as their major non-hydroxylated cellular fatty acids, 3-OH 12 : 0 as a hydroxylated fatty acid and also contained unidentified $C_{18}$ branched fatty acid. The ubiquinone system in the respiratory chain was Q-9. Based on the physiological and biochemical characteristics, the isolate was assigned to a novel species of the genus Thiobacillus sp. iw.

  • PDF

Characteristics of Sulfur Oxidation by a Newly Isolated Burkholderia spp.

  • JUNG JE, SUNG;JANG KI-HYO;SIHN EON-HWAN;PARK SEUNG-KOOK;PARK CHANG-HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.716-721
    • /
    • 2005
  • The role of an effective microbial species is critical to the successful application of biological processes to remove sulfur compounds. A bacterial strain was isolated from the soil of a malodorous site and identified as Burkholderia spp. This isolate was able to oxidize thiosulfate to sulfate, with simultaneous pH decrease and accumulation of elemental sulfur. The specific growth rate and the sulfate oxidation rate using the thiosulfate basal medium were $0.003 h^{-1}\;and\;3.7 h^{-1}$, respectively. The isolated strain was mixotrophic, and supplementation of $0.2\%$ (w/v) of yeast extract to the thiosulfate-basal medium increased the specific growth rate by 50-fold. However, the rate of sulfate oxidation was more than ten times higher without yeast extract. The isolate grew best at pH 7.0 and $30^{\circ}C$, and the sulfate oxidation rate was the highest at 0.12 M sodium thiosulfate. In an upflow biofilter, the isolated strain was able to degrade $H_2S\;with\;88\%$ efficiency at 8 ppm and 121/h of incoming gas concentration and flow rate, respectively. The cell density at the bottom of the column reached $3.2{\times}10^8$ CFU/(g bead) at a gas flow rate of 121/h.

Characteristics of Sulfur oxidation and the Removal of Hydrogen sulfide by Burkholdera[Pseudomonas] cepacia (Burkholderia[Pseudomonas] cepacia의 황 산화 특성 및 황화 수소 제거)

  • 정성제;이은관;전억한;윤인길;박창호
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.466-473
    • /
    • 2001
  • A bacterium was isolated from soils in Suwon, Korea for the purpose of H$_2$S removal using a biofilter system. The isolate was gram-negative, rod-shaped, catalase-positive, motile, and the isolated bacterium showed a positve in utilizing energy sources including citrate, mannitol, sucrose, fructors, and trehalsoe. Based on its biochemical characteristics it was identified as Burkholderia(Pseudomonas) cepacia. The growth rate of the bacterium in thiosulfate medium with yeast extract was 0.15 hr$\^$-1/ and generation time was 4.6 hr. The cell productivity was 8.05 mg/L$.$h and the isolate grew logarithmically up to 12 hr. The maximum rate of sulfur oxidation was 0.18 g-S/L$.$h. The optimum pH and temperature for the growth of the bacterium were 7.0 and 30$\^{C}$, respectively. The pH range for the growth of B. cepacia was 5.0-8.0. The oxidation rate of thiosulfate was lowered by a substrate thiosulfate when the concentration was higher than 0.12 M. both growth rate and sulfur oxidation rate of Burkholderia(Pseudomonas) cepacia was enhanced about 1.5 times with the addition of 0.2% yeast extract. The removal of hydrogen sulfide was investigated by immobilized B. cepacia with Ca-alginate. The maximum rate removal for H$_2$S was 6.25 g$.$$.$h$\^$-1/ when 12 L/h of flow rate was supplied. From this study suggest the immobilized B. cepacia could have a potential for H$_2$S removal.

  • PDF

Ubiquitous Presence and Activity of Thiosulfate Oxidizing Bacteria in Rhizosphere of Economically Important Crop Plants of Korea (국내 작물 근권에 서식하는 황산화세균의 분포와 합성)

  • Yim, Woo-Jong;Anandham, R.;Gandhi, P. Indira;Hong, In-Soo;Islam, M.R.;Trivedi, P.;Madhaiyan, M.;Han, Gwang-Hyun;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.1
    • /
    • pp.9-17
    • /
    • 2008
  • The presence of thiosulfate oxidizing bacteria was examined in rhizosphere soils of 19 economically important plant species belonging to 10 different families. The results showed that the thiosulfate oxidizing bacteria were present in all the tested rhizosphere soils, and the total 32 thiosulfate oxidizing bacteria were recovered. Furthermore, the biochemical characterization revealed that 56% and 44% of the isolates belonged to the obligate chemolithoautotrophs and facultative heterotrophs, respectively. The isolates ATSR15P utilized 19.17 mM of thiosulfate and accumulated 11.65 mM of sulfate in the medium. Concurrently, the decrease in pH of the medium was observed. This study comprehensively demonstrates that the active sulfur oxidation is a ubiquitous phenomenon in the rhizosphere of crop plants in Korea.

Optimization of the Sulfur-oxidzing Bacteria, Thiobacillus novellus SRM (황 산화 세균인 Thiobacillus novellus SRM 성장 최적화)

  • 권규혁;차월석;고한철;이광연;박돈희;차진명
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.443-447
    • /
    • 2003
  • The microorganism was isolated from the night soil treatment plant for the removal of sulfur compounds. The growth conditions of the sulfur-oxidizing bacteria were investigated and the isolate characterized as Thiobacillus noveilus SRM. The optimal pH of Thiobacillus novellus SRM on cell growth was pH 7.0 and the optimal temperature was 30$^{\circ}C$ and the optimal air flow rate was 1 vvm, respectively. As a results of cell growth from the Monod plot, the specific growth rate was 0.032 hr$\^$-l/, $V_{max}$ was 1.43 hr$\^$-l/ and $K_{m}$ was 0.32, respectively. The thiosulfate oxidation by Thiobacillus novellus SRM was made of sulfate ion. The sulfate ion reduced pH and decreased cell growth.

Treatment of Photographic Wastewater by Chemical Oxidation and Biological Treatment process (화학적산화 및 생물학적처리법에 의한 사진폐액의 처리)

  • 정경훈;최형일
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.1
    • /
    • pp.34-42
    • /
    • 1997
  • A laboratory experiments were performed to investigate the treatment of photographic processing wastewater by chemical oxidation and biological treatment system. The effect of reaction conditions such as hydrogen peroxide dosage, ferrous sulfate dosage and pH on the COD removal in Fenton oxidation were investigated. The optimal dosage of hydrogen peroxide was 2.58 M and 3.87 M for the developing and fixing process wastewater, respectively. The Fenton oxidation was most efficient in the pH range of 3-5 and the optimal condition for initial reaction pH was 5 for a developing process wastewater. With iron powder catalyst, the COD for a developing process wastewater was removed in lower pH than with ferrous sulfate catalyst. The removal efficiency of COD for refractory compounds such as Diethyleneglycol, Benzylalcohol, Hydroxylamine Sulfate, Ammonium Thiosulfate, Ammonium Ferric EDTA and Disodium EDTA in the photogaphic wastewater was found than 90% except Potassium Carbonate. When the photographic processing wastewater after pretreatment by Fenton oxidation was treated with batch activated sludge process, the addition of $KH_2PO_4$ as a phosphorous compound improved the removal efficiency of COD. During the continuous biological treatment of developing and fixing process wastewater after pretreatment by Fenton oxidation, the effluent COD concentration less than 100 mg/l was obtained at 0.425 and 0.25 kgCOD/m$^3$.d, respectively.

  • PDF