Browse > Article

Characteristics of Sulfur Oxidation by a Newly Isolated Burkholderia spp.  

JUNG JE, SUNG (Department of Food Science and Technology, Kyung Hee University)
JANG KI-HYO (Department of Food and Nutrition, Samcheok National University)
SIHN EON-HWAN (Department of Hotel Culinary Arts, Ulsan College)
PARK SEUNG-KOOK (School of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University)
PARK CHANG-HO (Industrial Liaison Research Institute, Kyung Hee University, Department of Chemical Engineering, Kyung Hee University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.4, 2005 , pp. 716-721 More about this Journal
Abstract
The role of an effective microbial species is critical to the successful application of biological processes to remove sulfur compounds. A bacterial strain was isolated from the soil of a malodorous site and identified as Burkholderia spp. This isolate was able to oxidize thiosulfate to sulfate, with simultaneous pH decrease and accumulation of elemental sulfur. The specific growth rate and the sulfate oxidation rate using the thiosulfate basal medium were $0.003 h^{-1}\;and\;3.7 h^{-1}$, respectively. The isolated strain was mixotrophic, and supplementation of $0.2\%$ (w/v) of yeast extract to the thiosulfate-basal medium increased the specific growth rate by 50-fold. However, the rate of sulfate oxidation was more than ten times higher without yeast extract. The isolate grew best at pH 7.0 and $30^{\circ}C$, and the sulfate oxidation rate was the highest at 0.12 M sodium thiosulfate. In an upflow biofilter, the isolated strain was able to degrade $H_2S\;with\;88\%$ efficiency at 8 ppm and 121/h of incoming gas concentration and flow rate, respectively. The cell density at the bottom of the column reached $3.2{\times}10^8$ CFU/(g bead) at a gas flow rate of 121/h.
Keywords
Heterotrophic bacterium; Burkholderia spp.; sulfur oxidation rate; biodegradation;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Kelly, D. P., J. K. Shergil, P. Lu, and A. P. Wood. 1997. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71: 5 -107
2 Kim, J. Y. and B. W Kim. 2003. Removal of dimethyl sulfide in ceramic biofilters immobilized with Thiobacillus thioparus TK-m. J. Microbiol. Biotechnol. 13: 866-871
3 Kim, S. H., K. J. Oh, J. H. Moon, and D. U. Kim. 2000. Simultaneous removal of hydrogen sulfide and ammonia using Thiobacillus sp. IW in a three-phase fluidized-bed bioreactor. J. Microbiol. Biotechnol. 10: 419-422
4 Ohta, Y., K. Sumida, and Y. Nakada. 1997. Purification and properties of a sulfide oxidizing enzyme /Tom Streptomyces sp. SH 91. Can. J. Microbiol. 43: 1097-1101   DOI   ScienceOn
5 Schook, L. B. and R. S. Berk. 1978. Nutritional studies with Pseudomonas aeruginosa grown on organic sulfur sources. J. Bacteriol. 133: 1377-1382
6 Vermeij, P. and A. K. Michael. 1999. Pathway of assimilative sulfur metabolism in Pseudomonas putida. J. Bacteriol. 181: 5833-5837
7 Park, D. H., J. M. Cha, H. W Ryu, G. W Lee, E. Y. Yu, J. I. Rhee, J. J. Park, S. W Kim, l. W Lee, Y. I. Joe, Y. W Ryu, B. K. Hur, J. K. Park, and K. Park. 2002. Hydrogen sulfide removal utilizing immobilized Thiobacillus sp. IW with Caalginate bead. Biol. Eng. J. 11: 167-173   DOI   ScienceOn
8 Zhang, L., J. Kuniyoshi, M. Hirai, and M. Shoda. 1991. Oxidation of dimethyl sulfide by Pseudomonas acidovorans DMR-11 isolated /Tom peat biofilter. Biotechnol. Lett. 13: 223-228   DOI
9 Kim, K. R., K. J. Oh, K. Y. Park, and D. U. Kim. 1999. Removal of hydrogen sulfide and methylmercaptan using Thiobacillus in a three-phase fluidized-bed bioreactor. J. Microbiol. Biotechnol. 9: 265-270
10 Eikum, A. S. and R. Storhang. 1986. Odor problems related to wastewater and sludge treatment, pp. 12-18. In V. C. Neilsen, J. H. Voorburg, and P. L. Hermite (eds.), Odor Prevention and Control of Organic Sludge and Livestock Farming. Elsevier Applied Science Publisher, London
11 Cho, K. S., M. Hirai, and M. Shoda. 1991. Degradation characteristics of hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide by Thiobacillus thioparus DW44 isolated from peat biofilter. J. Ferment. Bioeng. 71: 384-389   DOI   ScienceOn
12 Rawlings, D. E. 2001 The molecular genetics of Thiobacillus ferrooxidans and other mesophilic, acidophilic, chemolithotropic, iron- or sulfur-oxidizing bacteria. Hydrometallurgy 59: 187-201   DOI   ScienceOn
13 Barth, C. L., F. L. Elliott, and S. W. Melvin. 1984. Using odor control technology to support animal agriculture. Trans. ASAE. 27: 859-864   DOI
14 Cho, K. S., M. Hirai, and M. Shoda. 1992. Degradation of hydrogen sulfide by Xanthomonas sp. strain DY 44 isolated from peat. Appl. Environ. Microbiol. 58: 1183-1189
15 Yang, Y. and E. R. Allen. 1994. Biofiltration control of hydrogen sulfide. I. Design and operation parameters. J. Air Waste Manage. 44: 863-868   DOI   ScienceOn
16 Zhang, L., M. Hirai, and M. Shoda. 1991. Removal characteristics of dimethyl sulfide, methanethiol and hydrogen sulfide by Hyphomicrobium sp. 155 isolated /Tom peat biofilter. J. Ferment. Bioeng. 72: 392-396   DOI   ScienceOn
17 Yuzi, N. and Y. Ohta. 1999. Purification and properties of hydrogen sulfide oxidase from Bacillus sp. BN 53-1. J. Biosci. Bioeng. 87: 452-455   DOI   ScienceOn
18 Nelson, D. C. 1990. Physiology and biochemistry of filamentous sulfur bacteria, pp. 219-228. In H. G. Schlegel and B. Bowien (eds.), Autotrophic Bacteria. Springer-Verlag, Berlin
19 Bohn, H. 1992. Consider biofiltration for decontaminating gases. Chem. Eng. Prog. 88: 35-40
20 Chung, Y. C., C. Huang, and C. P. Tseng. 1996. Biodegradation of hydrogen sulfide by a laboratory-scale immobilized Pseudomonas putida CH11 biofilter. Biotechnol. Prog. 12: 773-778   DOI   ScienceOn
21 Kim, C. W, J. S. Park, S. K. Cho, K. J. OH, Y. S. Kim, and D. U. Kim. 2003. Removal of hydrogen sulfide, ammonia and benzene by fluidized-bed reactor and biofilter. J. Microbiol. Biotechnol. 13: 301- 304
22 Leahy, J. G., K. D. Tracy, and M. H. Eley. 2003. Degradation of mixtures of aromatic and chloroaliphatic hydrocarbons by aromatic hydrocarbon-degrading bacteria. FEMS Microbiol. Eco. 43: 271-276   DOI   ScienceOn
23 Cork, D. J., R. Garunas, and A. Sajjad. 1983. Chlorobium limicila (formerly thiosulfatophilum): Biocatalyst in the production of sulfur and organic carbon from a gas stream containing $H_{2}S$ and $CO_2$, Appl. Environ. Microbiol. 45: 913-918