Ubiquitous Presence and Activity of Thiosulfate Oxidizing Bacteria in Rhizosphere of Economically Important Crop Plants of Korea

국내 작물 근권에 서식하는 황산화세균의 분포와 합성

  • Yim, Woo-Jong (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Anandham, R. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Gandhi, P. Indira (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Hong, In-Soo (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Islam, M.R. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Trivedi, P. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Madhaiyan, M. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Han, Gwang-Hyun (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2007.10.15
  • Accepted : 2008.01.04
  • Published : 2008.02.28

Abstract

The presence of thiosulfate oxidizing bacteria was examined in rhizosphere soils of 19 economically important plant species belonging to 10 different families. The results showed that the thiosulfate oxidizing bacteria were present in all the tested rhizosphere soils, and the total 32 thiosulfate oxidizing bacteria were recovered. Furthermore, the biochemical characterization revealed that 56% and 44% of the isolates belonged to the obligate chemolithoautotrophs and facultative heterotrophs, respectively. The isolates ATSR15P utilized 19.17 mM of thiosulfate and accumulated 11.65 mM of sulfate in the medium. Concurrently, the decrease in pH of the medium was observed. This study comprehensively demonstrates that the active sulfur oxidation is a ubiquitous phenomenon in the rhizosphere of crop plants in Korea.

식물에 필수영양소인 황은 대부분 sulfate의 형태로 식물이 흡수하며, thiosulfate 형태로는 영양소로서 흡수하지 못한다. 황산화세균은 이러한 thiosulfate를 산화시켜 sulfate로 만들어 준다. 국내 토양에서 황산화세균의 분포를 조사하기 위하여 경제적으로 중요성을 갖는 19가지 작물의 근권에서 토양을 채취하였다. 항산화세균은 조사한 모든 작물의 근권에서 존재하였으며, 황산화능이 우수한 32가지의 황산화세균을 분리하였다. 또한 분리 균주의 생화학적 특징을 검토한 결과 32종 중 56%가 필수 화학합성자가영양생물이었으며, 44%가 기생 종속영양생물이었다. 분리 균주 ATSR15P는 배양과정에서 19.2 mM의 thiosulfate를 사용하였고, 11.7 mM의 sulfate를 축적하였다. 또한 ATSR15P 배양 과정 중 배지의 pH가 6.5에서 3.1로 감소하였다. 본 연구에서는 황산화세균에 의 한 황의 산화가 국내 작물의 근권에서 포괄적으로 나타나는 현상이라는 것을 증명하고 있다.

Keywords

References

  1. Anandham, R., R. Sridar, P. Nalayini, S. Poonguzhali, M. Madhaiyan, and T.M. Sa. 2007. Potential for plant growth promotion in groundnut (Arachis hypogaea L.) cv. ALR-2 by coinoculation of sulfur oxidizing bacteria and Rhizobium. Microbiol. Res. 162: 139-153 https://doi.org/10.1016/j.micres.2006.02.005
  2. Black, C.A., D.D. Evans, J.L. White, L.E. Ensminger, and F.E. Clark. 1965. Methods of Soil Analysis, Part 2.Madison, WI: USA
  3. Chapman, S.J. 1990. Thiobacillus population in some agricultural soils. Soil Biol. Biochem. 22: 479-482 https://doi.org/10.1016/0038-0717(90)90181-X
  4. Cox, M.S. 2001. The Lancaster soil test method as an alternative to Mehlich 3 soil test method. Soil Sci. 166: 484-489 https://doi.org/10.1097/00010694-200107000-00006
  5. Dalmastri, C., L. Chiarini, C. Cantale, A. Bevivino, and S. Tabacchiono. 1999. Soil type and maize cultivar affect the genetic diversity of maize root-associated Burkholderia cepacia populations. Microb. Ecol. 38: 273-284 https://doi.org/10.1007/s002489900177
  6. Das, S.K., A. K. Mishra, B.J. Tindall, F.A. Rainey, and E. Stackebrandt. 1996. Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. J. Syst. Bacteriol. 46: 981-987 https://doi.org/10.1099/00207713-46-4-981
  7. Deb, C., E. Stackebrandt, S. Pradella, A. Saha, and P. Roy. 2004. Phylogenetically diverse new sulfur chemolithotrophs of $\alpha$- Proteobacteria isolated from Indian soils. Curr. Microbiol. 48: 452-455
  8. Friedrich, C.G., F. Bardischewsky, D. Rother, A. Quentmeier, and J. Fischer. 2005. Prokaryotic sulfur oxidation. Curr. Opin. Microbiol. 8: 253-259 https://doi.org/10.1016/j.mib.2005.04.005
  9. Friedrich, C.G., D. Rother, F. Bardischewsky, A. Quentmeier, and J.Fischer. 2001. Oxidation of inorganic sulfur compounds by bacteria: Emergence of a common mechanism? Appl. Environ. Microbiol. 67: 2873-2882 https://doi.org/10.1128/AEM.67.7.2873-2882.2001
  10. Germida, J.J., J.R. Lawrence, and V.S.S.R. Gupta. 1985. Microbialoxidation of sulfur in Saskatchewan soils. p. 703-710. In: Proceedings of the International sulfur 84 Conference. The sulfur development institute of Canada, Calgary
  11. Ghosh, W., A. Bagchi, S. Mandal, B. Dam, and P. Roy. 2005. Tetrathiobacter kashmirensis gen. nov., sp. Nov., a novel mesophilic, neutrophilic, tetrathionate-oxidizing, facultatively chemolithotrophic betaproteobacterium isolated from soil from a temperate orchard in Jammu and Kashmir, India. Int. J. Syst. Evol. Microbiol. 55: 1779-1787 https://doi.org/10.1099/ijs.0.63595-0
  12. Ghosh, W., and P. Roy. 2006a. Mesorhizobium thiogangeticum sp. nov., novel sulfur- oxidizing chemolithoautotroph from the rhizosphere soil of an Indian tropical leguminous plant. Int. J. syst. Evol. Microbiol. 56: 91-97 https://doi.org/10.1099/ijs.0.63967-0
  13. Ghosh, W., and P. Roy. 2006b. Ubiquitous presence and activity of sulfur-oxidizing lithoautotrophic microorganisms in the rhizospheres of tropical plants. Curr. Sci. 91: 159-161
  14. Ghosh, W., S. Mandal, and P. Roy. 2006. Paracoccus bengalensis sp. nov., a novel sulfur-oxidizing chemolithoautotroph from the rhizospheric soil of an Indian tropical leguminous plant. Syst. Appl. Micorbiol. 29: 396-403 https://doi.org/10.1016/j.syapm.2005.10.004
  15. Ghosh, W., and P. Roy 2007. Chemolithoautotrophic oxidation of thiosulfate, tetrathionate and thiocyanate by a novel rhizobacterium belonging to the genus Paracoccus. FEMS Microbiol. Lett. 270: 124-131 https://doi.org/10.1111/j.1574-6968.2007.00670.x
  16. Graff, A., and S. Stubner. 2003. Isolation and molecular characterization of thiosulfate oxidizing bacteria from an Italian rice field soil. Syst. Appl. Microbiol. 26: 445-452 https://doi.org/10.1078/072320203322497482
  17. Hiltner, L. 1904. Uber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbackteriologie und unter bessonderer Berucksichtigung der Grundungung und Brache. Arbeiten Deutscher Landwirtschafts Gesellschaft. 98: 59-78
  18. Holt, J.G., N.R. Krieg, P.H.A. Sneath, J.T. Staley, and S.T. Williams. (eds.). 1994. Bergey's Manual of Determinative Bacteriology, Baltimore, MD, USA
  19. Hudson, J.A., R.M. Daniel, and H.W. Morgan. 1988. Isolation of a strain of Bacillus schlegelii from geothermally heated antartic soil. FEMS Microbiol. Lett. 51: 57-60 https://doi.org/10.1111/j.1574-6968.1988.tb02968.x
  20. Jaeger, C.H., I.I.I. Lindow, W. Miller, E. Clark, and M.K. Firestone. 1999. Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl. Env. Microbiol. 65: 2685-2690
  21. Kelly, D.P., and A.P. Wood. 1994. Synthesis and determination of thiosulfate and polythionates. Methods Enzymol. 243: 475-501 https://doi.org/10.1016/0076-6879(94)43037-3
  22. Kelly, D.P., L.A. Chambers, and P.A. Trudinger. 1969. Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate in mixture. Anal. Chem. 41: 898-901 https://doi.org/10.1021/ac60276a029
  23. Kinkel, L.L., M. Wilson, and S.E. Lindow. 2000. Plant species and plant incubation conditions influence variability in epiphytic bacterial population size. Microb. Ecol. 39: 1-11 https://doi.org/10.1007/s002489900182
  24. Knauth, S., T. Hurek, D. Brar, and B.R. Hurek. 2005. Influence of different Oryza cultivars on expression nifH gene pools in roots of rice. Environ. Microbiol. 7: 1725-1733 https://doi.org/10.1111/j.1462-2920.2005.00841.x
  25. Kolmert, A., P. Wikstrm, and K.B. Hallberg. 2000. A fast and simple turbidometric method for the determination of sulfatereducing bacterial cultures. J. Microbiol. Methods, 41: 179-184 https://doi.org/10.1016/S0167-7012(00)00154-8
  26. Kuklinsky-Sobral, J.K., W.L. Arajo, R. Mendes, I.O. Geraldi, A.A.P. Kleiner, and J.L. Azevedo. 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol. 6: 1244-1251 https://doi.org/10.1111/j.1462-2920.2004.00658.x
  27. Marchner, P., C.H. Yang, R. Lieberei, and D.E. Crowley. 2001. Soil and plant specific effects on babcterial community composition in the rhizosphere. Soil Biol. Biochem. 33: 1437-1445 https://doi.org/10.1016/S0038-0717(01)00052-9
  28. Marilley, L., and M. Arango. 1999. Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl. Soil Ecol. 13: 127-136 https://doi.org/10.1016/S0929-1393(99)00028-1
  29. Mukhopadhyaya, P.N., C. Deb, C. Lahiri, and P. Roy. 2000. A soxA gene encoding a diheme cytochrome c and a sox locus, essential for sulfur oxidation in new sulfur lithotrophic bacterium. J. Bacteriol. 182: 4278-4287 https://doi.org/10.1128/JB.182.15.4278-4287.2000
  30. Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270 https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  31. Padden, N., F.A. Rainey, D.P. Kelly, and A.P. Wood. 1997. Xanthobacter tagetidis sp. nov., an organism associated with Tagetes species and able to grow on substituted thiophenes. Int. J. Syst. Bacteriol. 47: 394-401 https://doi.org/10.1099/00207713-47-2-394
  32. Podgorsek, L., and J.F. Imhoff. 1999. Tetrathionate production by sulfur oxidizing bacteria and the role of tetrathionate in the sulfur cycle of Baltic Sea sediments. Aquat. Microb. Ecol. 17: 255-265 https://doi.org/10.3354/ame017255
  33. Pramer, D., and E.L. Schmidt. 1964. Experimental soil microbiology. Burgess Publishing, Minneapolis, Minnesota
  34. Rupela, O.P., and P. Tauro. 1973. Isolation and characterization of Thiobacillus from alkali soils. Soil Biol. Biochem. 5: 891-897 https://doi.org/10.1016/0038-0717(73)90035-7
  35. Scherer, H.W. 2001. Sulfur in crop production. Eur. J. Agron. 14: 81-111 https://doi.org/10.1016/S1161-0301(00)00082-4
  36. Smit, E., P. Leeflang, S. Gommans, J. van den Broek, S. van Mil, and K. Wernars. 2001. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol. 67: 2284-2291 https://doi.org/10.1128/AEM.67.5.2284-2291.2001
  37. Sorokin, D.Y., T.P. Tourova, A.M. Lysenko, and G. Muyzer. 2006. Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology-(UK) 152: 3013-3023 https://doi.org/10.1099/mic.0.29106-0
  38. Stamford, N.P., P.R. Santos, C.E.S. Santos, A.D.S. Freitas, S.H.L. Dias, and Jr. Lira. 2007. Agronomic effectiveness of biofertilizers with phosphate rock sulfur and Acidhithiobacillus for Yam bean grown on Brazilian tableland acidic soil. Bioresour. Technol. 98: 1311-1318 https://doi.org/10.1016/j.biortech.2006.04.037
  39. Unno, Y., K. Okubo, J. Wasaki, T. Shiano, and M. Osaki. 2005. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ. Microbiol. 7: 396-404 https://doi.org/10.1111/j.1462-2920.2004.00701.x
  40. Wainwright, W. 1984. Sulfur oxidation in soils. Adv. Agron. 37: 349-396 https://doi.org/10.1016/S0065-2113(08)60458-7
  41. Wood, A.P., D.P. Kelly, I.R. McDonald, S.L. Jordan, T.D. Morgan, S. Khan, J.C. Murrell, and E. Borodina. 1998. A novel pinkpigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth of thiocyanate or cyanate as sole nitrogen sources. Arch. Microbiol. 169