Characteristics of Sulfur Oxidation by a Newly Isolated Burkholderia spp.

  • JUNG JE, SUNG (Department of Food Science and Technology, Kyung Hee University) ;
  • JANG KI-HYO (Department of Food and Nutrition, Samcheok National University) ;
  • SIHN EON-HWAN (Department of Hotel Culinary Arts, Ulsan College) ;
  • PARK SEUNG-KOOK (School of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University) ;
  • PARK CHANG-HO (Industrial Liaison Research Institute, Kyung Hee University, Department of Chemical Engineering, Kyung Hee University)
  • Published : 2005.08.01

Abstract

The role of an effective microbial species is critical to the successful application of biological processes to remove sulfur compounds. A bacterial strain was isolated from the soil of a malodorous site and identified as Burkholderia spp. This isolate was able to oxidize thiosulfate to sulfate, with simultaneous pH decrease and accumulation of elemental sulfur. The specific growth rate and the sulfate oxidation rate using the thiosulfate basal medium were $0.003 h^{-1}\;and\;3.7 h^{-1}$, respectively. The isolated strain was mixotrophic, and supplementation of $0.2\%$ (w/v) of yeast extract to the thiosulfate-basal medium increased the specific growth rate by 50-fold. However, the rate of sulfate oxidation was more than ten times higher without yeast extract. The isolate grew best at pH 7.0 and $30^{\circ}C$, and the sulfate oxidation rate was the highest at 0.12 M sodium thiosulfate. In an upflow biofilter, the isolated strain was able to degrade $H_2S\;with\;88\%$ efficiency at 8 ppm and 121/h of incoming gas concentration and flow rate, respectively. The cell density at the bottom of the column reached $3.2{\times}10^8$ CFU/(g bead) at a gas flow rate of 121/h.

Keywords

References

  1. Barth, C. L., F. L. Elliott, and S. W. Melvin. 1984. Using odor control technology to support animal agriculture. Trans. ASAE. 27: 859-864 https://doi.org/10.13031/2013.32885
  2. Bohn, H. 1992. Consider biofiltration for decontaminating gases. Chem. Eng. Prog. 88: 35-40
  3. Cho, K. S., M. Hirai, and M. Shoda. 1991. Degradation characteristics of hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide by Thiobacillus thioparus DW44 isolated from peat biofilter. J. Ferment. Bioeng. 71: 384-389 https://doi.org/10.1016/0922-338X(91)90248-F
  4. Cho, K. S., M. Hirai, and M. Shoda. 1992. Degradation of hydrogen sulfide by Xanthomonas sp. strain DY 44 isolated from peat. Appl. Environ. Microbiol. 58: 1183-1189
  5. Chung, Y. C., C. Huang, and C. P. Tseng. 1996. Biodegradation of hydrogen sulfide by a laboratory-scale immobilized Pseudomonas putida CH11 biofilter. Biotechnol. Prog. 12: 773-778 https://doi.org/10.1021/bp960058a
  6. Cork, D. J., R. Garunas, and A. Sajjad. 1983. Chlorobium limicila (formerly thiosulfatophilum): Biocatalyst in the production of sulfur and organic carbon from a gas stream containing $H_{2}S$ and $CO_2$, Appl. Environ. Microbiol. 45: 913-918
  7. Eikum, A. S. and R. Storhang. 1986. Odor problems related to wastewater and sludge treatment, pp. 12-18. In V. C. Neilsen, J. H. Voorburg, and P. L. Hermite (eds.), Odor Prevention and Control of Organic Sludge and Livestock Farming. Elsevier Applied Science Publisher, London
  8. Kelly, D. P., J. K. Shergil, P. Lu, and A. P. Wood. 1997. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71: 5 -107
  9. Kim, C. W, J. S. Park, S. K. Cho, K. J. OH, Y. S. Kim, and D. U. Kim. 2003. Removal of hydrogen sulfide, ammonia and benzene by fluidized-bed reactor and biofilter. J. Microbiol. Biotechnol. 13: 301- 304
  10. Kim, J. Y. and B. W Kim. 2003. Removal of dimethyl sulfide in ceramic biofilters immobilized with Thiobacillus thioparus TK-m. J. Microbiol. Biotechnol. 13: 866-871
  11. Kim, K. R., K. J. Oh, K. Y. Park, and D. U. Kim. 1999. Removal of hydrogen sulfide and methylmercaptan using Thiobacillus in a three-phase fluidized-bed bioreactor. J. Microbiol. Biotechnol. 9: 265-270
  12. Kim, S. H., K. J. Oh, J. H. Moon, and D. U. Kim. 2000. Simultaneous removal of hydrogen sulfide and ammonia using Thiobacillus sp. IW in a three-phase fluidized-bed bioreactor. J. Microbiol. Biotechnol. 10: 419-422
  13. Leahy, J. G., K. D. Tracy, and M. H. Eley. 2003. Degradation of mixtures of aromatic and chloroaliphatic hydrocarbons by aromatic hydrocarbon-degrading bacteria. FEMS Microbiol. Eco. 43: 271-276 https://doi.org/10.1111/j.1574-6941.2003.tb01067.x
  14. Nelson, D. C. 1990. Physiology and biochemistry of filamentous sulfur bacteria, pp. 219-228. In H. G. Schlegel and B. Bowien (eds.), Autotrophic Bacteria. Springer-Verlag, Berlin
  15. Ohta, Y., K. Sumida, and Y. Nakada. 1997. Purification and properties of a sulfide oxidizing enzyme /Tom Streptomyces sp. SH 91. Can. J. Microbiol. 43: 1097-1101 https://doi.org/10.1139/m97-157
  16. Park, D. H., J. M. Cha, H. W Ryu, G. W Lee, E. Y. Yu, J. I. Rhee, J. J. Park, S. W Kim, l. W Lee, Y. I. Joe, Y. W Ryu, B. K. Hur, J. K. Park, and K. Park. 2002. Hydrogen sulfide removal utilizing immobilized Thiobacillus sp. IW with Caalginate bead. Biol. Eng. J. 11: 167-173 https://doi.org/10.1016/S1369-703X(02)00021-9
  17. Rawlings, D. E. 2001 The molecular genetics of Thiobacillus ferrooxidans and other mesophilic, acidophilic, chemolithotropic, iron- or sulfur-oxidizing bacteria. Hydrometallurgy 59: 187-201 https://doi.org/10.1016/S0304-386X(00)00182-1
  18. Schook, L. B. and R. S. Berk. 1978. Nutritional studies with Pseudomonas aeruginosa grown on organic sulfur sources. J. Bacteriol. 133: 1377-1382
  19. Vermeij, P. and A. K. Michael. 1999. Pathway of assimilative sulfur metabolism in Pseudomonas putida. J. Bacteriol. 181: 5833-5837
  20. Yang, Y. and E. R. Allen. 1994. Biofiltration control of hydrogen sulfide. I. Design and operation parameters. J. Air Waste Manage. 44: 863-868 https://doi.org/10.1080/1073161X.1994.10467287
  21. Yuzi, N. and Y. Ohta. 1999. Purification and properties of hydrogen sulfide oxidase from Bacillus sp. BN 53-1. J. Biosci. Bioeng. 87: 452-455 https://doi.org/10.1016/S1389-1723(99)80093-0
  22. Zhang, L., J. Kuniyoshi, M. Hirai, and M. Shoda. 1991. Oxidation of dimethyl sulfide by Pseudomonas acidovorans DMR-11 isolated /Tom peat biofilter. Biotechnol. Lett. 13: 223-228 https://doi.org/10.1007/BF01025822
  23. Zhang, L., M. Hirai, and M. Shoda. 1991. Removal characteristics of dimethyl sulfide, methanethiol and hydrogen sulfide by Hyphomicrobium sp. 155 isolated /Tom peat biofilter. J. Ferment. Bioeng. 72: 392-396 https://doi.org/10.1016/0922-338X(91)90093-V