Browse > Article
http://dx.doi.org/10.4014/jmb.0802.127

Thiosulfate Oxidation and Mixotrophic Growth of Methylobacterium goesingense and Methylobacterium fujisawaense  

Anandham, R. (Department of Agricultural Chemistry, Chungbuk National University)
Indiragandhi, P. (Department of Agricultural Chemistry, Chungbuk National University)
Madhaiyan, M. (Department of Agricultural Chemistry, Chungbuk National University)
Chung, Jong-Bae (Division of Life and Environmental Sciences, Daegu University)
Ryu, Kyoung-Yul (Organic Farming Division, National Institute of Agricultural Science and Technology, Rural Development Administration (RDA))
Jee, Hyeong-Jin (Organic Farming Division, National Institute of Agricultural Science and Technology, Rural Development Administration (RDA))
Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.1, 2009 , pp. 17-22 More about this Journal
Abstract
The mixotrophic growth with methanol plus thiosulfate was examined in nutrient-limited mixotrophic condition for Methylobacterium goesingense CBMB5 and Methylobacterium fujisawaense CBMB37. Thiosulfate oxidation increased the growth and protein yield in mixotrophic medium that contained 150mM methanol and 20mM sodium thiosulfate, at 144 h. Respirometric study revealed that thiosulfate was the most preferable reduced inorganic sulfur source, followed by sulfite and sulfur. M. goesingense CBMB5 and M. fujisawaense CBMB37 oxidized thiosulfate directly to sulfate, and intermediate products of thiosulfate oxidation such as polythionates, sulfite, and sulfur were not detected in spent medium and they did not yield positive amplification for tested soxB primers. Enzymes of thiosulfate oxidation such as rhodanese and sulfite oxidase activities were detected in cell-free extracts of M. goesingense CBMB5, and M. fujisawaense CBMB37, and thiosulfate oxidase (tetrathionate synthase) activity was not observed. It indicated that both the organisms use the "non-S4 intermediate" sulfur oxidation pathway for thiosulfate oxidation. It is concluded from this study that M. goesingense CBMB5, and M. fujisawaense CBMB37 exhibited mixotrophic metabolism in medium containing methanol plus thiosulfate and that thiosulfate oxidation and the presence of a "Paracoccus sulfur oxidation" (PSO) pathway in methylotrophic bacteria are species dependant.
Keywords
Thiosulfate oxidation; mixotrophic growth; rhodanese; sulfite oxidase; soxB; S4I; PSO;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
1 de Zwart, J. M. M., P. N. Nelisse, and J. G. Kuenen. 1996. Isolation and characterization of Methylophaga sulfidovorans sp. nov., an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiol. Ecol. 20: 261-270   DOI   ScienceOn
2 Fujimura, Y. K. and H. Kuraishi. 1980. Characterization of Thiobacillus novellus and its thiosulfate oxidation. J. Gen. Appl. Microbiol. 26: 357-367   DOI
3 Jung, S. J., K. H. Jang, E. H. Shin, S. K. Park, and C. H. Park. 2005. Characteristics of sulfur oxidation by a newly isolated Burkholderia spp. J. Microbiol. Biotechnol. 15: 716-721   ScienceOn
4 Perez, R. and A. Matin. 1980. Growth of Thiobacillus novellus on mixed substrates (mixotrophic growth). J. Bacteriol. 142: 633-638   PUBMED
5 Sorbo, B. 1957. A colorimetric method for the determination of thiosulfate. Biochim. Biophys. Acta 23: 412-416   DOI   PUBMED   ScienceOn
6 Sorokin, D. Y., T. P. Tourova, E. M. Spiridonova, F. A. Rainey, and G. Muyzer. 2005. Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. Int. J. Syst. Evol. Microbiol. 55: 1069-1075   DOI   ScienceOn
7 Appia-Ayme, C., P. J. Little, Y. Matsumoto, A. P. Leech, and B. C. Berks. 2001. Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J. Bacteriol. 183: 6107-6118   DOI   ScienceOn
8 Frank, J. and J. A. Duine. 1990. Methanol dehydrogenase from Hyphomicrobium X. Methods Enzymol. 188: 202-209   DOI
9 Friedrich, C. G., D. Rother, F. Bardischewsky, A. Quentmeier, and J. Fischer. 2001. Oxidation of inorganic sulfur compounds by bacteria: Emergence of a common mechanism? Appl. Environ. Microbiol. 67: 2873-2882   DOI   ScienceOn
10 Madhaiyan, M., B. Y. Kim, S. Poonguzhali, S. W. Kwon, M. H. Song, J. H. Ryu, S. J. Go, B. S. Koo, and T. M. Sa. 2007. Methylobacterium oryzae sp. nov., a novel aerobic pinkpigmented, facultatively methylotrophic, 1-aminocyclopropane- 1-carboxylate deaminase-producing bacterium isolated from rice. Int. J. Syst. Evol. Microbiol. 57: 326-331   DOI   ScienceOn
11 Cha, J. M., J. S. Hyun, H. R. Sung, and I. K. Sun. 2007. Hydrogen sulfide removal by immobilized Thiobacillus novellas on $SiO_2$ in a fluidized bed reactor. J. Microbiol. Biotechnol. 17:320-324   과학기술학회마을   PUBMED   ScienceOn
12 Petri, R., L. Podgorsek, and J. F. Imhoff. 2001. Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol. Lett. 197: 171-178   DOI   ScienceOn
13 Charles, A. M. and I. Suzuki. 1966. Mechanism of thiosulfate oxidation by Thiobacillus novellus. Biochim. Biophys. Acta 128:510-521   DOI   ScienceOn
14 Borodina, E., D. P. Kelly, F. A. Rainey, N. L. Ward-Rainey, and A. P. Wood. 2000. Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch. Microbiol. 173: 425-437   DOI   ScienceOn
15 Padden, A. N., D. P. Kelly, and A. P. Wood. 1998. Chemolithoautotrophy and mixotrophy in the thiophene-2-carboxylic acid-utilizing Xanthobacter tagetidis. Arch. Microbiol. 169: 249-256   DOI   ScienceOn
16 Kolmert, A., P. Wikstr$\ddot{o}$m, and K. B. Hallberg. 2000. A fast and simple turbidometric method for the determination of sulfate-reducing bacterial cultures. J. Microbiol. Methods 41:179-184   DOI   ScienceOn
17 Poonguzhali, S., M. Madhaiyan, and T. M. Sa. 2007. Production of acyl homoserine lactone quorum-sensing signals is wide-spread in Gram-negative Methylobacterium. J. Microbiol. Biotechnol. 17: 226-223   과학기술학회마을   ScienceOn
18 Truper, H. G. and H. G. Schlegel. 1964. Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30: 225-238   DOI   ScienceOn
19 Madhaiyan, M., S. Poonguzhali, S. W. Kwon, M. H. Song, and T. M. Sa. 2008. Molecular characterization of Burkholderia strains isolated from rice cultivars (Oryza sativa L.) for species identification and phylogenetic grouping. J. Microbiol. Biotechnol. 18: 1005-1010   과학기술학회마을   PUBMED   ScienceOn
20 Lowry, O. H., A. Rosebrough, A. L. Farr, and R. J. Randal. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265-275   PUBMED
21 Matin, A. 1978. Organic nutrition of chemolithotrophic bacteria. Annu. Rev. Microbiol. 32: 433-468   DOI   PUBMED   ScienceOn
22 Lahiri, C., S. Mandal, W. Ghosh, B. Dam, and P. Roy. 2006. A novel gene cluster soxSRT is essential for the chemolithotrophic oxidation of thiosulfate and tetrathionate by Pseudaminobacter salicylatoxidans KCT001. Curr. Microbiol. 52: 267-273   DOI   ScienceOn
23 Anandham, R., P. Indira Gandhi, M. Madhaiyan, K. Kim, W. Yim, V. S. Saravanan, J. Chung, and T. M. Sa. 2007. Thiosulfate oxidation and mixotrophic growth of Methylobacterium oryzae. Can. J. Microbiol. 53: 869-876   DOI   ScienceOn
24 Das, S. K. and A. K. Mishra. 1996. Transposon mutagenesis affecting thiosulfate oxidation in Bosea thiooxidans, a new chemolithotrophic bacterium. J. Bacteriol. 178: 3628-3633   DOI   PUBMED   ScienceOn
25 Singleton, D. R. and D. Smith. 1988. Improved assay for rhodanese in Thiobacillus spp. Appl. Environ. Microbiol. 54:2866-2867   PUBMED   ScienceOn
26 Wodara, C., F. Bardischewsky, and C. G. Friedrich. 1997. Cloning and characterization of sulfite dehydrogenase, two ctype cytochromes, and a flavoprotein of Paracoccus denitrificansGB-17: Essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation. J. Bacteriol. 179: 5014-5023   DOI   PUBMED   ScienceOn
27 Ghosh, W. and P. Roy. 2007. Chemolithoautotrophic oxidation of thiosulfate, tetrathionate and thiocyanate by a novel rhizobacterium belonging to the genus Paracoccus. FEMS Microbiol. Lett. 270: 124-131   DOI   ScienceOn
28 Kelly, D. P., J. K. Shergill, W. P. Lu, and A. P. Wood. 1997. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71: 95-107   DOI   ScienceOn
29 Trudinger, P. A. 1961. Thiosulfate oxidation and cytochromes in Thiobacillus X2 thiosulfate oxidizing enzyme. Biochem. J. 78: 680-686   DOI   PUBMED   ScienceOn
30 Kelly, D. P. and A. P. Wood. 1994. Synthesis and determination of thiosulfate and polythionates. Methods Enzymol. 243: 475-501   DOI   ScienceOn
31 Meyer, B., J. F. Imhoff, and J. Kuever. 2007. Molecular analysis of the distribution and phylogeny of the soxB among sulfuroxidizing bacteria-evolution of the Sox sulfur oxidation enzyme system. Environ. Microbiol. 9: 2957-2977   DOI   ScienceOn