• 제목/요약/키워드: thin-walled curved beam

검색결과 37건 처리시간 0.021초

Thin- Walled Curved Beam Theory Based on Centroid-Shear Center Formulation

  • Kim Nam-Il;Kim Moon-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.589-604
    • /
    • 2005
  • To overcome the drawback of currently available curved beam theories having non-symmetric thin-walled cross sections, a curved beam theory based on centroid-shear center formulation is presented for the spatially coupled free vibration and elastic analysis. For this, the displacement field is expressed by introducing displacement parameters defined at the centroid and shear center axes, respectively. Next the elastic strain and kinetic energies considering the thickness-curvature effect and the rotary inertia of curved beam are rigorously derived by degenerating the energies of the elastic continuum to those of curved beam. And then the equilibrium equations and the boundary conditions are consistently derived for curved beams having non-symmetric thin-walled cross section. It is emphasized that for curved beams with L- or T-shaped sections, this thin-walled curved beam theory can be easily reduced to the solid beam theory by simply putting the sectional properties associated with warping to zero. In order to illustrate the validity and the accuracy of this study, FE solutions using the Hermitian curved beam elements are presented and compared with the results by previous research and ABAQUS's shell elements.

박벽 곡선보의 엄밀한 탄성요소강도행렬 (Exact Elastic Element Stiffness Matrix of Thin-Walled Curved Beam)

  • 김남일;윤희택;이병주;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.385-392
    • /
    • 2002
  • Derivation procedures of exact elastic element stiffness matrix of thin-walled curved beams are rigorously presented for the static analysis. An exact elastic element stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The displacement and normal stress of the section are evaluated and compared with thin-walled straight and curved beam element or results of the analysis using shell elements for the thin-walled curved beam structure in order to demonstrate the validity of this study.

  • PDF

도심-전단중심 정식화를 이용한 개선된 곡선보이론 (Curved Beam Theory Based On Centroid-Shear Center Formulation)

  • 김남일;경용수;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.1033-1039
    • /
    • 2006
  • To overcome the drawback of currently available curved beam theories having non-symmetric thin-walled cross sections, a curved beam theory based on centroid-shear center formulation is presented for the spatially coupled free vibration and elastic analyses. For this, the elastic strain and kinetic energies considering the thickness-curvature effect and the rotary inertia of curved beam are derived by degenerating the energies of the elastic continuum to those of curved beam. And then the equilibrium equations and the boundary conditions are consistently derived for curved beams having non-symmetric thin-walled cross section. It is emphasized that for curved beams with L- or T-shaped sections, this thin-walled curved beam theory can be easily reduced to tl1e solid beam theory by simply putting the sectional properties associated with warping to zero. In order to illustrate the validity and the accuracy of this study, FE solutions using the Hermitian curved beam elements are presented and compared with the results by previous research and ABAQUS's shell elements.

  • PDF

Free vibration and elastic analysis of shear-deformable non-symmetric thin-walled curved beams: A centroid-shear center formulation

  • Kim, Nam-Il;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • 제21권1호
    • /
    • pp.19-33
    • /
    • 2005
  • An improved shear deformable thin-walled curved beam theory to overcome the drawback of currently available beam theories is newly proposed for the spatially coupled free vibration and elastic analysis. For this, the displacement field considering the shear deformation effects is presented by introducing displacement parameters defined at the centroid and shear center axes. Next the elastic strain and kinetic energies considering the shear effects due to the shear forces and the restrained warping torsion are rigorously derived. Then the equilibrium equations are consistently derived for curved beams with non-symmetric thin-walled sections. It should be noticed that this formulation can be easily reduced to the warping-free beam theory by simply putting the sectional properties associated with warping to zero for curved beams with L- or T-shaped sections. Finally in order to illustrate the validity and the accuracy of this study, finite element solutions using the isoparametric curved beam elements are presented and compared with those in available references and ABAQUS's shell elements.

Exact dynamic element stiffness matrix of shear deformable non-symmetric curved beams subjected to initial axial force

  • Kim, Nam-Il;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • 제19권1호
    • /
    • pp.73-96
    • /
    • 2005
  • For the spatially coupled free vibration analysis of shear deformable thin-walled non-symmetric curved beam subjected to initial axial force, an exact dynamic element stiffness matrix of curved beam is evaluated. Firstly equations of motion and force-deformation relations are rigorously derived from the total potential energy for a curved beam element. Next a system of linear algebraic equations are constructed by introducing 14 displacement parameters and transforming the second order simultaneous differential equations into the first order simultaneous differential equations. And then explicit expressions for displacement parameters are numerically evaluated via eigensolutions and the exact $14{\times}14$ dynamic element stiffness matrix is determined using force-deformation relations. To demonstrate the accuracy and the reliability of this study, the spatially coupled natural frequencies of shear deformable thin-walled non-symmetric curved beams subjected to initial axial forces are evaluated and compared with analytical and FE solutions using isoparametric and Hermitian curved beam elements and results by ABAQUS's shell elements.

일축대칭 단면을 갖는 박벽 원형 곡선보의 자유진동 해석 (Free Vibration Analysis of Monosymmetric Thin-walled Circular Curved Beam)

  • 장승필;김문영;민병철
    • 한국지진공학회논문집
    • /
    • 제2권2호
    • /
    • pp.57-68
    • /
    • 1998
  • 본 연구에서는 일축대칭 단면을 갖는 박벽 원형곡선보의 자유진동해석을 수행할 수 있는 유한요소 이론 및 엄밀해를 제시하기 위하여, 가상일의 원리를 이용한 3차원 연속체? 운동방정식을 제시한다. 박벽단면의 구속된 비틂(restrained warping)효과를 고려하는 곡선보의 운동방정식을 얻는다. 단순지지되고 일축대칭 단면을 갖는 박벽 곡선보의 면외 고유진동에 대한 엄밀해를 제시하고 박벽 곡선보를 유한요소로 분할하여 요소의 변위장을 요소 변위벡터에 관한 3차의 Hermitian 다항식으로 나타내어 운동방정식에 대입함으로써 탄성강도행렬과 질량행렬을 유도한다. 또한 본 연구에서 얻어진 엄밀해와 박벽 곡선보요소를 이용한 유한요소 해석결과를 직선박벽보요소를 이용한 해석결과와 비교 검토를 함으로써 본 연구의 타당성을 입증한다.

  • PDF

Series solutions for spatially coupled buckling anlaysis of thin-walled Timoshenko curved beam on elastic foundation

  • Kim, Nam-Il
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.447-484
    • /
    • 2009
  • The spatially coupled buckling, in-plane, and lateral bucking analyses of thin-walled Timoshenko curved beam with non-symmetric, double-, and mono-symmetric cross-sections resting on elastic foundation are performed based on series solutions. The stiffness matrices are derived rigorously using the homogeneous form of the simultaneous ordinary differential equations. The present beam formulation includes the mechanical characteristics such as the non-symmetric cross-section, the thickness-curvature effect, the shear effects due to bending and restrained warping, the second-order terms of semitangential rotation, the Wagner effect, and the foundation effects. The equilibrium equations and force-deformation relationships are derived from the energy principle and expressions for displacement parameters are derived based on power series expansions of displacement components. Finally the element stiffness matrix is determined using force-deformation relationships. In order to verify the accuracy and validity of this study, the numerical solutions by the proposed method are presented and compared with the finite element solutions using the classical isoparametric curved beam elements and other researchers' analytical solutions.

전단변형을 받는 비대칭 박벽 보-기둥 요소의 엄밀한 동적강도행렬 (Exact Dynamic Element Stiffness Matrices of Shear Deformable Nonsymmetric Thin-walled Beam-Columns)

  • 윤희택;박영곤;김용기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.536-543
    • /
    • 2005
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled curved beams subjected to axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. Firstly this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using element force-displacement relationships. The natural frequencies of the nonsymmetric thin-walled curved beam are evaluated and compared with analytical solutions or results by ABAQUS's shell elements in order to demonstrate the validity of this study.

  • PDF

두께가 얇은 단면을 갖는 곡선보의 자유진동 해석 (Free Vibration Analysis of Curved Beams with Thin-Walled Cross-Section)

  • 이병구;박광규;오상진
    • 소음진동
    • /
    • 제9권6호
    • /
    • pp.1193-1199
    • /
    • 1999
  • This paper deals with the free vibrations of circular curved beams with thin-walled cross-section. The differential equation for the coupled flexural-torsional vibrations of such beams with warping is solved numerically to obtain natural frequencies and mode shapes. The Runge-Kutta and determinant search methods, respectively, are used to solve the governing differential equation and to compute the eigenvalues. The lowest three natural frequencies and corresponding mode shapes are calculated for the thin-walled horizontally curved beams with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. A wide range of opening angle of beam, warping parameter, and two different values of slenderness ratios are considered. Numerical results are compared with existing exact and numerical solutions by other methods.

  • PDF

축하중을 받는 비대칭 박벽 곡선보의 엄밀한 동적강도행렬 (Exact Dynamic Stiffness Matrix of Nonsymmetric Thin-walled Curved Beams Subjected to Axial Forces)

  • 윤희택;박영곤;김문영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.906-915
    • /
    • 2004
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled curved beams subjected to axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. Firstly this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using clement force-displacement relationships. The natural frequencies of the nonsymmetric thin-walled curved beam are evaluated and compared with analytical solutions or results by ABAQUS's shell elements in order to demonstrate the validity of this study.

  • PDF