• 제목/요약/키워드: thin-walled box beam

검색결과 28건 처리시간 0.028초

Theoretical analysis of Y-shape bridge and application

  • Lu, Peng-Zhen;Zhang, Jun-Ping;Zhao, Ren-Da;Huang, Hai-Yun
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.137-152
    • /
    • 2009
  • Mechanic behavior of Y-shape thin-walled box girder bridge structure is complex, so one can not exactly hold the mechanical behavior of the Y-shape thin-walled box girder bridge structure through general calculation theory and analytical method. To hold the mechanical behavior better, based on elementary beam theory, by increasing the degree of freedom analytical method, taking account of restrained torsiondistortion angledistortion warp and shearing lag effect at the same time, authors obtain a thin-walled box beam analytical element of 10 degrees of freedom of every node, derive stiffness matrix of the element, and code a finite element procedure. In addition, authors combine the obtained procedure with spatial grillage analytical method, meanwhile, they build a new analytical method that is the spatial thin-walled box girder element grillage analysis method. In order to validate the precision of the obtained analysis method, authors analyze a type Y-shape thin-walled box girder bridge structure according to the elementary beam theory analytical method, the shell theory analytical method and the spatial thin-walled box girder element grillage analysis method respectively. At last, authors test a type Y-shape thin-walled box girder bridge structure. Comparisons of the results of theory analysis with the experimental text show that the spatial thin-walled box girder element grillage analysis method is simple and exact. The research results are helpful for the knowledge of the mechanics property of these Y-shape thin-walled box girder bridge structures.

Analytical modeling of thin-walled box T-joints

  • Marur, Prabhakar R.
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.447-457
    • /
    • 2009
  • A general analytical method for computing the joint stiffness from the sectional properties of the members that form the joint is derived using Vlasov's thin-walled beam theory. The analytical model of box T-joint under out-of-plane loading is investigated and validated using shell finite element results and experimental data. The analytical model of the T-joint is implemented in a beam finite element model using a revolute joint element. The out-of-plane displacement computed using the beam-joint model is compared with the corresponding shell element model. The results show close correlation between the beam revolute joint model and shell element model.

쉘요소를 이용한 박판다실박스거더에서의 비틀림과 뒤틀림 해석기법 연구 (A Study of Torsional and Distortional Analysis of Thin-walled Multicell Box Girder Using Shell Elements)

  • 김승준;박종섭;김성남;강영종
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.71-74
    • /
    • 2007
  • Thin-walled multicell box girders subjected to an eccentric load can be produced the three global behaviors of flexure, torsion, and distortion. But it is very difficult to evaluate each influences of major behaviors numerically. If we can decompose an eccentric load P into flexural, torsional, and distortional forces, we can execute quantitative analysis each influences of major behaviors. Decomposition of Applied Load for Thin-walled Rectangular multi-cell box girders is researched by Park, Nam-Hoi(Development of a multicell Box Beam Element Including Distortional Degrees of Freedom, 2003). But researches about thin-walled trapezoidal multi-cell section is insufficient. So, this paper deals with decomposition process and independent analysis method of multi-cell box girders include trapezoidal section.

  • PDF

고차 보요소를 이용한 폐단면 사각 박판보 진동해석 (Vibration Analysis of Closed Thin-Walled Box Beams Using High-Order Beam Elements)

  • 김윤영;김진홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.199-204
    • /
    • 1997
  • This paper proposes a new 'finite element for the vibration analysis of thin-walled beams of rectangular closed sections. To predict the dynamic behavior of the thin-walled beam accurately, warping and distortion deformations should be considered for the analysis. The motivation of the present development is that conventional beam elements cannot describe correctly deformations such as warping and lozenging which are not negligible in some situations. Several numerical examples are studied to confirm the validity of the present element.

  • PDF

비틀림과 평면외 굽힘을 받는 직사각단면 곡선 박판보 이론 (The Theory of Thin-Walled Curved Rectangular Box Beams Under Torsion and Out-of-Plane Bending)

  • 김윤영;김영규
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2637-2645
    • /
    • 2000
  • We propose a new one-dimensional theory for thin-walled curved box beams having rectangular cross sections, in which torsional, out-of-plane bending, warping and distortional deformations are coupled. The major difference between the present theory and existing theories lies in that the present theory takes into account additional distortion as well as warping. To verify the present theory, a standard finite element based on the present theory is developed and used for numerical analysis. A couple of numerical examples indeed confirm that the consideration of warping and distortional deformations is very important.

구조연성을 고려한 복합재료 상자형 보의 강성계수 예측에 관한 연구 (A Study on the Calculation of Stiffness Properties for Composite Box-Beams with Elastic Couplings)

  • 정성남;동경민
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.147-150
    • /
    • 2001
  • In the present work, a linear static analysis is presented for thin-walled prismatic box-beams made of generally anisotropic materials. A mixed beam theory has been used to model and carry out the analysis. Three different constitutive relations are assessed into the beam formulation. Simple layup cases having symmetric or anti-symmetric configuration have been chosen and tested to clearly show the effects of elastic couplings of the beam. Both 2D and 3D finite element structural analysis using the MSC/NASTRAN has been performed to validate the current analytical results. Results show that appropriate assumptions for the constitutive equations are important and prerequisite for the accurate prediction of beam stiffness constants and also for the beam behavior.

  • PDF

Fatigue life prediction of horizontally curved thin walled box girder steel bridges

  • Nallasivam, K.;Talukdar, Sudip;Dutta, Anjan
    • Structural Engineering and Mechanics
    • /
    • 제28권4호
    • /
    • pp.387-410
    • /
    • 2008
  • The fatigue damage accumulation rates of horizontally curved thin walled box-girder bridge have been estimated from vehicle-induced dynamic stress history using rain flow cycle counting method in the time domain approach. The curved box-girder bridge has been numerically modeled using computationally efficient thin walled box-beam finite elements, which take into account the important structural actions like torsional warping, distortion and distortional warping in addition to the conventional displacement and rotational degrees of freedom. Vehicle model includes heave-pitch-roll degrees of freedom with longitudinal and transverse input to the wheels. The bridge deck unevenness, which is taken as inputs to the vehicle wheels, has been assumed to be a realization of homogeneous random process specified by a power spectral density (PSD) function. The linear damage accumulation theory has been applied to calculate fatigue life. The fatigue life estimated by cycle counting method in time domain has been compared with those found by estimating the PSD of response in frequency domain. The frequency domain method uses an analytical expression involving spectral moment characteristics of stress process. The effects of some of the important parameters on fatigue life of the curved box bridge have been studied.

Theory of Thin-Walled, Pretwisted Composite Beams with Elastic Couplings

  • Jung, Sung-Nam;Kim, Chang-Joo;Ko, Jin-Hwan;Kim, Chang-Wan
    • Advanced Composite Materials
    • /
    • 제18권2호
    • /
    • pp.105-119
    • /
    • 2009
  • In this work, the structural response of thin-walled composite beams with pretwist angle is investigated by using a mixed beam approach that combines the stiffness and flexibility methods in a unified manner. The Reissner's semi-complimentary energy functional is used to derive the stiffness matrix that approximates the beam in an Euler-Bernoulli level for extension and bending and Vlasov level for torsion. The bending and torsion-related warpings induced by the pretwist effects are derived in a closed form. The developed theory is validated with available literature and detailed finite element structural analysis results using the MSC/NASTRAN. Pretwisted composite beams with rectangular solid and thin-walled box sections are illustrated to validate the current approach. Acceptable correlation has been achieved for cases considered in this study. The effects of pretwist and fiber orientation angles on the static behavior of pretwisted composite beams are also studied.

단면형상이 변하는 박판보의 진동해석에 관한 연구 (On the Free Vibration Analysis of Thin-Walled Box Beams having Variable Cross-Sections)

  • 이기준;사진용;김준식
    • 한국전산구조공학회논문집
    • /
    • 제30권2호
    • /
    • pp.111-117
    • /
    • 2017
  • 본 논문에서는 유한요소 자유진동해석을 수행하여 박판 보에서의 국소변형효과를 조사하였다. 자유진동해석은 단일셀 및 다중셀 박스보에 대해 수행하였으며, 풍력발전 블레이드를 가장 단순하게 모사할 수 있는 단일셀 박스보를 먼저 해석하였다. 쉘요소 해석결과를 보요소 해석결과와 비교하여 보았을 때 박스 보의 박판 두께가 정확도에 매우 중요한 역할을 함을 확인하였다. 두께가 얇은 경우에는 쉘의 국소변형(또는 쉘 모드)가 주요하게 나타난 반면에 두꺼울 경우에는 전단변형의 효과가 크게 나타남을 알 수 있었다. 목이 있는 단일셀 박스보에서의 국소변형은 목 주위에 집중되어 나타남을 확인하였다. 마지막으로 실제 블레이드와 유사한 다중셀 테이퍼 보의 주파수 및 모드형상을 분석하였다. 보 요소 해석결과는 쉘 요소 결과와 비교하여 약 5~7% 주파수 차이를 보였으며, 이는 보요소가 국소변형을 제대로 모사하지 못하기 때문이다. 특히 래그모드(lagwise mode)의 경우에는 단면의 분할 정도의 영향보다 국소변형의 효과가 매우 크다는 것을 알 수 있었다.

시공단계를 고려환 곡선변단면 프리스트레스트 콘크리트 박스거더교량의 해석 (Segmental Analysis of Curved Non-Prismatic Prestressed Concrete Box Girder Bridges)

  • 박찬민;강영진
    • 대한토목학회논문집
    • /
    • 제14권1호
    • /
    • pp.71-81
    • /
    • 1994
  • 시공단계를 고려한 곡선변단면 프리스트레스트 콘크리트 박스거더교량의 해석을 수행하였다. 곡선변단면 박스요소를 사용하며 시공순서에 따른 구조계의 변화, 크리이프, 건조수축과 릴렉세이션 등의 효과를 고려하였다. 사용되는 단면형상은 양쪽에 캔틸레버를 갖는 직사각형 1실 박스단변이며 부재축은 평면상의 곡선으로 단면제원은 부재축을 따라 변할 수 있다. 각 요소는 3절점으로 구성되며 각 절점은 단면 찌그러짐과 ?을 포함하는 8자유도를 가진다. 본 연구에서 여러가지 경우의 예를 해석, 비교하였으며 실제교량에의 적용 가능성을 입증하였다.

  • PDF