• 제목/요약/키워드: thin substrate

Search Result 4,055, Processing Time 0.034 seconds

Fully Integrated Electromagnetic Noise Suppressors Incorporated with a Magnetic Thin Film on an Oxidized Si Substrate

  • Sohn, Jae-Cheon;Han, S.H.;Yamaguchi, Masahiro;Lim, S.H.
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.21-26
    • /
    • 2007
  • Si-based electromagnetic noise suppressors on coplanar waveguide transmission lines incorporated with a $SiO_2$ dielectric layer and a nanogranular Co-Fe-Al-O magnetic thin film are reported. Unlike glass-based devices, large signal attenuation is observed even in the bare structure without coating the magnetic thin film. Much larger signal attenuation is achieved in fully integrated devices. The transmission scattering parameter ($S_{21}$) is as small as -90 dB at 20 GHz at the following device dimensions; the thicknesses of the $SiO_2$ and Co-Fe-Al-O thin films are 0.1 $\mu$m and 1 $\mu$m, respectively, the length of the transmission line is 15 mm, and the width of the magnetic thin film is 2000 $\mu$m. In all cases, the reflection scattering parameter ($S_{11}$) is below -10 dB over the whole frequency band. Additional distributed capacitance formed by the Cu transmission line/$SiO_2$/Si substrate is responsible for these characteristics. It is considered that the present noise suppressors based on the Si substrate are a first important step to the realization of MMIC noise suppressors.

Structural and Electrical Characteristics of MZO Thin Films Deposited at Different Substrate Temperature and Hydrogen Flow Rate (증착 온도 및 수소 유량에 따른 MZO 박막의 구조적 및 전기적 특성)

  • Lee, Jisu;Lee, Kyu Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.6-11
    • /
    • 2018
  • In this study, we have studied the effect of substrate temperature and hydrogen flow rate on the characteristics of MZO thin films for the TCO(Transparent conducting oxide). MZO thin films were deposited by RF magnetron sputtering at room temperature and $100^{\circ}C$ with various $H_2$ flow rate(1sccm~4sccm). In order to investigate the effect of hydrogen gas flow rate on the MZo thin film, we experimented with changing the hydrogen in argon mixing gas flow rate from 1.0sccm to 4.0sccm. MZO thin films deposited at room temperature and $100^{\circ}C$ show crystalline structure having (002), (103) preferential orientation. The electrical resistivity of the MZO films deposited at $100^{\circ}C$ was lower than that of the MZO film deposited at room temperature. The decrease of electrical resistivity with increasing substrate temperature was interpreted in terms of the increase of the charge carrier mobility and carrier concentration which seems to be due to the oxygen vacancy generated by the reducing atmosphere in the gas. The average transmittance of the MZO films deposited at room temperature and $100^{\circ}C$ with various hydrogen gas flow was more than 80%.

Influence of Magnetic Field Near the Substrate on Characteristics of ITO Film Deposited by RF Sputtering Method (기판 부근의 자기장이 RF 스퍼터링법으로 증착된 ITO 박막의 특성에 미치는 영향)

  • Kim, Hyun-Soo;Jang, Ho-Won;Kang, Jong-Yoon;Kim, Jin-Sang;Yoon, Suk-Jin;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.563-568
    • /
    • 2012
  • Indium tin oxide (ITO) films were prepared using radio frequency (RF) magnetron sputtering method, magnets were equipped near the target in the sputter to bring the plasma near the target. The effect of magnetic field that brings the plasma near the substrate was compared with that of substrate heating. The effect of substrate heating on the grain size of the ITO thin film was larger than that of the magnetic field. However, the grain size of the ITO thin film was larger when the magnetic field was applied near the substrate during the sputtering process than when the substrate was not heated and the magnetic field was not applied. If stronger magnetic field is applied near the substrate during sputtering, it can be expected that the ITO thin film with good electrical conductivity and high transparency is obtained at low substrate temperature. When magnetic field of 90 Gauss was applied near the substrate during sputtering, the mobility of the ITO thin film increased from 15.2 $cm^2/V.s$ to 23.3 $cm^2/V.s$, whereas the sheet resistivity decreased from 7.68 ${\Omega}{\cdot}cm$ to 5.11 ${\Omega}{\cdot}cm$.

Control of ITO/PET Thin Films Depending on the Ratio of Oxygen Partial Pressure in Sputter (스퍼터의 산소분압비율에 의존한 ITO/PET박막의 조절)

  • 김현후;신재혁;신성호;박광자
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.6
    • /
    • pp.671-676
    • /
    • 1999
  • ITO (indium tin oxide) thin films on PET (polyethylene terephthalate) substrate have been deposited by a dc reactive magnetron sputtering without heat treatments such as substrate heater and post heat treatment. Each sputtering parameter during the sputtering deposition is an important factor for the high quality of ITO thin films deposited on polymeric substrate. Particularly, the material, electrical and optical properties of as-deposited ITO oxide films are dominated by the ratio of oxygen partial pressure. As the experimental results, the excellent ITO films are prepared on PET substrate at the operating conditions as follows : operating pressure of 5 mTorr, target-substrate distance of 45mm, do power of 20~30W, and oxygen gas ratio of 10%. The optical transmittance is above 80% at 550 nm, and the sheet resistance and resistivity of films are 24 Ω/square and $1.5\times$10$^{-3}$ Ωcm, respectively.

  • PDF

Characteristics of ZnO Thin Films Grown on p-type Si and Sapphire Substrate by Pulsed Laser Deposition

  • Lee, K. C.;Lee, Cheon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.6
    • /
    • pp.241-245
    • /
    • 2003
  • ZnO thin films on (l00) p-type Si and sapphire substrates have been deposited by a pulsed laser deposition technique using an Nd:YAG laser with a wavelength of 266 nm. The influence of the deposition parameters such as oxygen pressure, substrate temperature and laser energy density on the properties of the grown films was studied. The experiments were performed for substrate temperatures in the range of 200∼50$0^{\circ}C$ and oxygen pressure in the range of 100∼700 sccm. All of the films grown in this experiment show strong c-axis orientation with (002) textured ZnO peak. With increasing substrate temperature, the FWHM (full width at half maximum) and surface roughness were decreased. In the case of using sapphire substrate, the intensity of PL spectra increased with increasing ambient oxygen flow rate. We investigated the structural and morphological properties of ZnO thin films using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM).

Dependence of Electrical and Optical Properties on Substrate Temperatures of AZO Thin Films (기판온도에 의한 AZO 박막의 전기적 및 광학적 특성 변화)

  • Seong-Jun Kang;Yang-Hee Joung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1067-1072
    • /
    • 2023
  • We prepared AZO (Al2O3 : 3 wt %) thin films according to the substrate temperature using the pulsed laser deposition method and the structural, electrical, and optical properties of the thin films were investigated. The AZO thin film deposited at 400℃ showed the best (002) orientation and the FWHM was 0.38°. As a result of the investigation of electrical properties, it was confirmed that the carrier concentration and mobility increased and the resistivity decreased as the substrate temperature increased. The average transmittance in the visible light region showed a high value of 85% or more regardless of the substrate temperature. The Burstein-Moss effect, in which the carrier concentration would increase with increasing substrate temperature thereby widening the energy band gap, was also observed. The resistivity and the figure of merit of the AZO thin film deposited at a substrate temperature of 400℃ were 6.77 × 10-4 Ω·cm and 1.02 × 104-1·cm-1 respectively, showing the best value.

Nanoparticulate Co-Ferrite Thin Films on Glass Substrate Prepared by Sol-Gel Method (유리기판에 sol-gel법으로 제조된 나노입자 Co-ferrite 박막의 특성)

  • 오영제;최현석;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.425-431
    • /
    • 2000
  • Cobalt ferrite thin films on Corming glass substrate were fabricated by a sol-gel method. Cobalt ferrite thin films with the grain size of 20-35 nm and thickness of 50nm were obtained. Rapid thermal annealing (RTA) and Annealing processes were adopted for comparison of characteristics of the films. Coercivity values were changed with thermal condition and magnetization values were increased as a function of soaking time. With prolonged soaking time, however, it was decreased because of the diffusion of cations from the glass substrate. The RTA process in preparation of cobalt ferrite thin film was the effective way to prevent and to form a single spinel phase in reduced soaking time. The film heated at 600$^{\circ}C$ for 30 minutes by RTA had coercivity of 2,600 Oe, saturation magnetization 460 emu/㎤, and Mr$.$$\delta$ of 1.43 memu/$\textrm{cm}^2$.

  • PDF

Deposition of diamond film at low pressure using the RF plasma CVD (고주파 플라즈마 CVD에 의한 저 압력에서의 다이아몬드 막의 성장)

  • Koo, Hyo-Geun;Park Sang-Hyun;Park Jae-Yoon;Kim Kyoung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.2
    • /
    • pp.49-56
    • /
    • 2001
  • Diamond thin films have been deposited on the silicon substrate by inductively coupled radio frequency plasma enhanced chemical vapor deposition system. The morphological features of thin films depending on methane concentration and deposition time have been studied by scanning electron microscopy and Raman spectroscopy. The diamond particles deposited uniformly on silicon substrate($10{\times}10[mm^2]$) at the pressure of 1[torr], a methane concentration of 1[%], a hydrogen flow rate of 60[sccm], a substrate temperature of $840\{sim}870[^{\circ}C]$, an input power of 1[kw], and a deposition time of 1[hour]. With increasing deposition time, the diamond particles grew, and than about 3 hours have passed, the graphitic phase carbon thin film with "cauliflower-like" morphology deposited on the diamond thin films.

  • PDF

Interface Characterization of Supeconducting Thin Film on Sapphire Grown by an Excimer Laser (액시머 레이저로 증착된 초전도박막과 사파이어 기판간 계면 특성 분석)

  • 이상렬;박형호;강광용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.148-151
    • /
    • 1995
  • Excimer laser has been used to fabricate superconducting YBa$_2$Cu$_3$O$\sub$7-x/(YBCO) thin films on various substrates. An XeCl excimer laser with an wavelength of 308 nm was used to deposit both buffer layer and superconducting thin film on sapphire substrate. The characterizations of the interface between thin film and substrate were performed. The interfacial properties of thin films on buffered sapphire and on bare sapphire were compared. With a 20 nm PrBa$_2$Cu$_3$O$\sub$7-x/(PBCO) buffer layer, no diffusion layer was observed between film and substrate while the diffusion layer with about 30 nm thickness was observed between film and sapphire without buffer layer.

  • PDF

Fabrication of Organic Thin-Film Transistors with Polymer Gate Insulators on Plastic Substrate

  • Ahn, Seong-Deok;Kang, Seung-Youl;Oh, Ji-Young;You, In-Kyu;Kim, Gi-Heon;Baek, Kyu-Ha;Kim, Chul-Am;Suh, Kyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1170-1173
    • /
    • 2006
  • Active layer patterned OTFT was obtained on a plastic substrate using the optimal growth condition of pentancene thin films as active layer and parylene thin films as passivation layer. Tranditional photolithography was performed to use a dry etch to pattern the material stack. The pentacene thin film and parylene thin film were deposited onto a plastic substrate using PC-OVD and CVD, respectively.

  • PDF