• Title/Summary/Keyword: thin metal

Search Result 2,200, Processing Time 0.03 seconds

Channel Structure and Header Design of Printed Circuit Heat Exchanger by Applying Internal Fluid Pressure (유체 내압을 고려한 인쇄기판형 열교환기의 채널구조 및 헤더 설계)

  • Kim, Jungchul;Shin, Jeong Heon;Kim, Dong Ho;Choi, Jun Seok;Yoon, Seok Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.767-773
    • /
    • 2017
  • Printed Circuit Heat Exchanger (PCHE) has an advantage for exchanging thermal energy between high-pressure and high-temperature fluids because its core is made by diffusion bonding method of accumulated metal thin-plates which are engraved of flow channel. Moreover, because it is possible that the flow channel can be micro-size hydraulic diameter, the heat transfer area per unit volume can be made larger than traditional heat exchanger. Therefore, PCHE can have higher efficiency of heat transfer. The smaller channel size can make the larger heat transfer area per unit volume. But if high pressure fluid flows inside the channel, the channel wall can be deformed, the structure and shape of flow channel and header have to be designed appropriately. In this study, the design methodology of PCHE channel in high pressure environment based on pressure vessel codes was investigated. And this methodology was validated by computational analysis.

Microwave Detector Using $YBa_2Cu_3O_{7-x}$ Grain Boundary Junction ($YBa_2Cu_3O_{7-x}$ 결정입계 접합을 이용한 마이크로파 감지소자)

  • Sin, Jung-Sik;Jo, Chang-Hyeon;Hwang, Du-Seop;Kim, Yeong-Geun;Wi, Dang-Mun;Cheon, Seong-Sun;Sin, U-Seok;Bae, Seong-Jun;Hong, Seung-Beom
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.681-686
    • /
    • 1994
  • Microwave Detector Using $YBa_{2}Cu_{3}O_{7-x}$, Grain Boundary Junction $YBa_{2}Cu_{3}O_{7-x}$ superconductor thin films were deposited on $LaAIO_{3}$ (100) single crystal substrates using a metal organic chemical vapor deposition (MOCVD) method. These films showed the critical temperature of about 9OK and critical current density of over $10^5/A \textrm{cm}^2$at 77K. These films showed granular structure with 0.5~1.5$\mu \textrm{m}$ grains. Bridge-type junctions, 6$\mu \textrm{m}$ in width and 6pm in length, were fabricated using the photolithography and the Ar ion milling techniques. Current-voltage (I-V) characteristics of these junctions with the microwave irradiation at 77K were studied. The critical current densities decreased as the irradiated microwave power increased. When microwaves were irradiated on the bridge at 77K. the I-V charateristics showed constant voltage stcp(Shapiro steps) at $\Delta$=nho/2e.

  • PDF

Characteristics of Transparent Conductive Tin Oxide Thin Films on PET Substrate Prepared by ECR-MOCVD (PET 기판상에 ECR 화학증착법에 의해 제조된 SnO2 투명도전막의 특성)

  • Kim, Yun Seok;Jeon, Bup Ju;Ju, Jeh Beck;Sohn, Tae Won;Lee, Joong Kee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.85-91
    • /
    • 2005
  • $SnO_2$ films were prepared at room temperature under a $(CH_3)_4Sn-H_2-O_2$ atmosphere in order to obtain transparent conductive polymer by using ECR-MOCVD (Electron Cyclotron resonance -Metal Organic Chemical Vapor Deposition) system. The electrical properties of the films were investigated as function of process parameters such as deposition time, microwave power, magnetic current power, magnet/showering/substrate distance and working pressure. An increase in microwave power and magnetic current power brought on $SnO_2$ film formation with low electric resistivity. On the other hand, the effects of process parameters described above on optical properties were insignificant in the range of our experimental scope. The transmittance and reflectance of the films prepared by the ECR-MOCVD exhibited their average values of 93-98% at wave length range of 380-780 nm and 0.1-0.5%, respectively. The grain size of the $SnO_2$ films that are also insensitive with the process parameters were in the range of 20-50 nm. On the basis of experimental data obtained in the present study, electrical resistivity of $7.5{\times}10^{-3}ohm{\cdot}cm$, transmittance of 93%, and reflectance of 0.2% can be taken as optimum values.

Axial Collapse Characteristics of Aluminum/Carbon Fiber Reinforced Plastic Composite Thin-Walled Members with Different Section Shapes (단면형상이 다른 Al/CFRP 혼성박육부재의 축압궤특성)

  • Hwang, Woo Chae;Lee, Kil Sung;Cha, Cheon Seok;Kim, Ji Hoon;Ra, Seung Woo;Yang, In Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.959-965
    • /
    • 2014
  • In the present study, we aimed to obtain design data that can be used for the side members of lightweight cars by experimentally examining the types of effects that the changes in the section shape and outermost layer of an aluminum (Al)/carbon fiber reinforced plastic (CFRP) composite structural member have on its collapse characteristics. We have drawn the following conclusions based on the test results: The circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $0^{\circ}$ was observed to be 52.9 and 49.93 higher than that of the square and hat-shaped members, respectively. In addition, the energy absorption characteristic of the circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $90^{\circ}$ was observed to be 50.49 and 49.2 higher than that of the square and hat-shaped members, respectively.

W 도핑된 ZnO 박막을 이용한 저항 변화 메모리 특성 연구

  • Park, So-Yeon;Song, Min-Yeong;Hong, Seok-Man;Kim, Hui-Dong;An, Ho-Myeong;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.410-410
    • /
    • 2013
  • Next-generation nonvolatile memory (NVM) has attracted increasing attention about emerging NVMs such as ferroelectric random access memory, phase-change random access memory, magnetic random access memory and resistance random access memory (RRAM). Previous studies have demonstrated that RRAM is promising because of its excellent properties, including simple structure, high speed and high density integration. Many research groups have reported a lot of metal oxides as resistive materials like TiO2, NiO, SrTiO3 and ZnO [1]. Among them, the ZnO-based film is one of the most promising materials for RRAM because of its good switching characteristics, reliability and high transparency [2]. However, in many studies about ZnO-based RRAMs, there was a problem to get lower current level for reducing the operating power dissipation and improving the device reliability such an endurance and an retention time of memory devices. Thus in this paper, we investigated that highly reproducible bipolar resistive switching characteristics of W doped ZnO RRAM device and it showed low resistive switching current level and large ON/OFF ratio. This may be caused by the interdiffusion of the W atoms in the ZnO film, whch serves as dopants, and leakage current would rise resulting in the lowering of current level [3]. In this work, a ZnO film and W doped ZnO film were fabricated on a Si substrate using RF magnetron sputtering from ZnO and W targets at room temperature with Ar gas ambient, and compared their current levels. Compared with the conventional ZnO-based RRAM, the W doped ZnO ReRAM device shows the reduction of reset current from ~$10^{-6}$ A to ~$10^{-9}$ A and large ON/OFF ratio of ~$10^3$ along with self-rectifying characteristic as shown in Fig. 1. In addition, we observed good endurance of $10^3$ times and retention time of $10^4$ s in the W doped ZnO ReRAM device. With this advantageous characteristics, W doped ZnO thin film device is a promising candidates for CMOS compatible and high-density RRAM devices.

  • PDF

Material Characteristics and Clay Source Interpretation of Crucibles in Baekje Kingdom Excavated from the Ssangbukri Site in Buyeo, Korea (부여 쌍북리 유적 출토 백제 도가니의 재료학적 특성과 원료의 산지해석)

  • Kim, Ji-Young;Park, Jin-Young;Park, Dae-Sun;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • The crucibles of Baekje Kingdom from the Ssangbukri Site which were used for glass and metal melting had light brown, grayish blue and grayish brown colored bodies. In thin section, the crucibles contained numerous quartz grains and pottery fragments. The surface was covered with fine grained quartz for thermal resistance. Based on decomposition of mica group minerals and formation of mullite detected by X-ray diffraction analysis, it was inferred that all crucibles have been fired over $1,000^{\circ}C$. It was also found that firing temperature has exceeded $1,100^{\circ}C$ in some crucibles because feldspar was not detected. The maximum temperature was assumed at $1,200^{\circ}C$. The magnetic susceptibility values and geochemical characteristics sorted out the crucibles into two groups that differed from the characteristics of the local soils. This reflected geological setting of the site where the alluvium was formed from two kinds of surrounding rock masses, granite gneiss and biotite granite. However, the local soils had similarities with the crucibles in weathering degree and geochemical behavior of major elements. In consequence, it was considered that the raw clay of the crucibles was supplied from the local area of the site.

Studies on the Electrochemical Behaviors, Spectrophotometric Determination of Heavy Lanthanide Ions and Heavy Metal Chelate Complexes with Bidentate Ligands(III) -Synthesis and Characterization of the Tetrakis(5,7-dichloro-8-quinolinato)(2-mercaptopyrimidinato) molybdenum(IV) Complex- (무거운 란탄이온의 전기화학적 거동, 분광학적 정량 및 중금속 이온과 두 자리 리간드 착물에 관한 연구(제 3 보): -테트라키스(5,7-디클로로-8-퀴놀리나토)(2-메르캅토피리미디나토) 몰리브데늄(IV) 착물의 합성 및 특성-)

  • Chang, Choo Hwan;Choi, Won Jong;Park, Keun Su;Son, Pyung Su;Suh, Moo Yul
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.417-424
    • /
    • 1993
  • Eight-coordinate tetrakis molybdenum(IV) complexes containing 5,7-dichloro-8-hydroxyquinolinol(Hdcq) and 2-mercaptopyrimidine(Hmpd) has been prepared. $Mo(mpd)_4$, $Mo(dcq)(mpd)_3$, $Mo(dcq)_2(mpd)_2$, $Mo(dcq)_3(mpd)$ and $Mo(dcq)_4$ complexes have been isolated by thin-layer chromatography on silicagel plates. These complexes have been charaterized by $^1H-nmr$ spectrum and UV-Vis. spectrum. The chemical shift values of the protons ${\alpha}$ to the nitrogen in the ligands are shifted to down field. The relative intensities of the peaks which are positioned at the same proton of $Mo(dcq)(mpd)_3$ and $Mo(dcq)_3(mpd)$ are observed in 2:1 ratio, in case of $Mo(dcq)_2(mpd)_2$ appears in approximately a 1:1 ratio. The stereochemistry of the complexes in discussed in terms of their nmr spectrum and Orgel's rule. By vertue of the intensities (${\varepsilon}$>10,000~25,000) the low energy($16,600{\sim}19,800cm^{-1}$) bands are observed for the electronic spectra of the complexes are assigned as charge transfer bands.

  • PDF

A study of Double Sheet Multi-forming Equipment (2겹 판재 멀티포밍 장치에 관한 연구)

  • Yun, Jae-Woong;Son, Ok-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.49-55
    • /
    • 2017
  • Most motor cases adopt deep drawing products, which are excellent in waterproof functions, concentricity, right angle, and quality. In addition, the blower motor and seat motor, which are installed in the car interior and do not require waterproof function, adopts a multi-forming manufacturing method. The deep drawing process requires an expensive transfer press that can digest approximately 12 processes, such as drawing, trimming and piercing. On the other hand, products can be produced with low investment because the multi-forming method is composed of one multi-forming machine or one multi-forming machine and one press. The multi-forming machine is a high-priced facility that is mostly imported and a bending / shearing process multi-foaming machine, which was developed by domestic small and medium-sized enterprises, is not enough to reduce the production cost. An integral multi - forming machine is used as a limited working method for thin material and small products. A large product and thick material has a high shear load. A large product and thick material has a high shear load and uses a single crank press. After blanking, the worker manually feeds the material to a multi-forming machine. When the bending operation is performed in the multi-forming machine, it is transferred to the press again to calibrate the dimensions. This variance in work processes has resulted in lower cost competitiveness due to the lower productivity, quality issues, and excessive operator input. The aim of this study was to establish a stable and cost - effective production system through bending / shearing process separation and facility automation.

Improvement of Conductive Micro-pattern Fabrication using a LIFT Process (레이저 직접묘화법을 이용한 미세패턴 전도성 향상에 관한 연구)

  • Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.475-480
    • /
    • 2017
  • In this paper, the conductivity of the fine pattern is improved in the insulating substrate by laser-induced forward transfer (LIFT) process. The high laser beam energy generated in conventional laser induced deposition processes induces problems such as low deposition density and oxidation of micro-patterns. These problems were improved by using a polymer coating layer for improved deposition accuracy and conductivity. Chromium and copper were used to deposit micro-patterns on silicon wafers. A multi-pulse laser beam was irradiated on a metal thin film to form a seed layer on an insulating substrate(SiO2) and electroless plating was applied on the seed layer to form a micro-pattern and structure. Irradiating the laser beam with multiple scanning method revealed that the energy of the laser beam improved the deposition density and the surface quality of the deposition layer and that the electric conductivity can be used as the microelectrode pattern. Measuring the resistivity after depositing the microelectrode by using the laser direct drawing method and electroless plating indicated that the resistivity of the microelectrode pattern was $6.4{\Omega}$, the resistance after plating was $2.6{\Omega}$, and the surface texture of the microelectrode pattern was uniformly deposited. Because the surface texture was uniform and densely deposited, the electrical conductivity was improved about three fold.

Microstructure and Magnetic Properties of Zn1-xCoxO Film Prepared by Pulsed DC Magnetron Sputtering (펄스 DC 마그네트론 스퍼터링법에 의한 Zn1-xCoxO 박막의 미세조직 및 자기적 특성)

  • Ko, Yoon-Duk;Ko, Seok-Bae;Choi, Moon-Soon;Tai, Weon-Pil;Kim, Ki-Chul;Kim, Jong-Min;Soh, Su-Jeung;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.211-217
    • /
    • 2005
  • [ $Zn_{1-x}Co_{x}O$ (x=0-0.3) films were grown on Corning 7059 glasses by asymmetrical bipolar pulsed dc magnetron sputtering. The c-axis orientation along (002) plane was enhanced with increasing Co concentration. The $Zn_{1-x}Co_{x}O$ films are grown with fibrous grains of tight dome shape. The transmittance spectra measured from UV-visible showed that sp-d exchange interactions and typical d-d transitions become activated with increasing Co concentration. The electrical resistivity of $Zn_{1-x}Co_{x}O$ films increased with increasing Co concentration, especially it increased greatly at $30at\% Co. X-ray photoelectron spectroscopy and alternating gradient magnetometer analyses indicated that no Co metal cluster is formed and the ferromagnetic properties are exhibited. The low electrical resistivity and room temperature ferromagnetism of $Zn_{1-x}Co_{x}O$ thin films suggested the possibility of the application to Diluted Magnetic Semiconductors (DMSs).