DOI QR코드

DOI QR Code

Axial Collapse Characteristics of Aluminum/Carbon Fiber Reinforced Plastic Composite Thin-Walled Members with Different Section Shapes

단면형상이 다른 Al/CFRP 혼성박육부재의 축압궤특성

  • Received : 2014.04.17
  • Accepted : 2014.06.11
  • Published : 2014.09.01

Abstract

In the present study, we aimed to obtain design data that can be used for the side members of lightweight cars by experimentally examining the types of effects that the changes in the section shape and outermost layer of an aluminum (Al)/carbon fiber reinforced plastic (CFRP) composite structural member have on its collapse characteristics. We have drawn the following conclusions based on the test results: The circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $0^{\circ}$ was observed to be 52.9 and 49.93 higher than that of the square and hat-shaped members, respectively. In addition, the energy absorption characteristic of the circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $90^{\circ}$ was observed to be 50.49 and 49.2 higher than that of the square and hat-shaped members, respectively.

본 연구에서는 Al/CFRP 혼성 구조부재가 승용차용 사이드부재에 사용될 것을 상정하여 Al/CFRP 혼성 구조부재의 단면형상의 변화, 최외각층의 변화가 압궤 특성에 어떠한 영향을 미치는가를 실험적으로 고찰하여 수송기계의 경량화를 위한 사이드부재로 사용될 수 있는 설계 데이터를 얻고자 하였다. 실험결과 다음과 같은 결론을 얻었다. 최외층각이 $0^{\circ}$로 적층된 원형 Al/CFRP 혼성 충격 흡수부재가 사각 Al/CFRP 혼성 충격 흡수부재 보다 52,9%, 모자형 Al/CFRP 혼성 충격 흡수부재 보다 49.93% 높게 나타났으며, 최외층각이 $90^{\circ}$로 적층된 경우 원형 Al/CFRP 혼성 충격 흡수부재 사각 Al/CFRP 혼성 충격 흡수부재 보다 50.49%, 모자형 Al/CFRP 혼성 충격 흡수부재 보다 49.2% 높게 나타났다.

Keywords

References

  1. A&D Consultants., 2011, Status and Forecast Report of Composite Material for Automotive, A&D Consultants, Seoul.
  2. Minoru, Y., Manabu, G. and Yasuhiko S., 2003, "Axial Crush of Hollow Cylindrical Structures with Various Polygonal Cross-Sections Numerical Simulation and Experiment," Journal of Materials Processing Technology, Vol. 140, pp. 59-64. https://doi.org/10.1016/S0924-0136(03)00821-5
  3. Farley, G. L. and Jones, R. M., 1991, "Prediction of Energy-Absorption Capability of Composite Tubes," Journal of Composite Materials, Vol. 26, pp. 388-404.
  4. Farley, G. L., 1992, "Relationship Between Mechanical-Property and Energy-Absorption Trends for Composite Tubes." NASA Technical Paper, OMB 0704-0188.
  5. Kim, Y. N., Im, K. H., Kim, S. K. and Yang, I. Y., 2003, "Energy Absorption Characteristics of CFRP Composite Tubes Under Axial Compression Load," Key Engineering Materials, Vol. 233-236, pp. 245-250. https://doi.org/10.4028/www.scientific.net/KEM.233-236.245
  6. Mamalis, A. G., Manolakos, D. E., Ioannidis, M. B. and Papapostolou, D. P., 2004, "Crashworthy Characteristics of Axially Statically Compressed Thin-Walled Square CFRP Composite Tubes: Experimental," Composite Structures, Vol. 63, pp. 347-360. https://doi.org/10.1016/S0263-8223(03)00183-1
  7. Mamilis, A. G., Manolakos, D. E., Demosthenous, G. A. and Johnson, W., 1991, "Axial Plastic Collapse of Thin Bi-Material Tubes as Energy Dissipating Systems," International Journal of Impact Engineering, Vol. 11, pp. 185-196. https://doi.org/10.1016/0734-743X(91)90005-Z
  8. Andre Laoie, J. and Kellas, S., 1996, "Dynamic Crush Tests of Energy-Absorbing Laminated Composite Plates," Composite : part A, Vol. 27A, pp. 467-475.