• Title/Summary/Keyword: thin layer chromatography (TLC)

Search Result 292, Processing Time 0.038 seconds

Composition Ratio Analysis of Transesterification Products of Olive Oil by Using Thin Layer Chromatography and Their Applicability to Cosmetics (올리브 오일의 에스터 교환반응 생성물의 TLC를 이용한 조성비 분석 및 화장품에의 응용가능성 평가)

  • Park, So Hyun;Shin, Hyuk Soo;Kim, A Rang;Jeong, Hyo Jin;Xuan, Song Hua;Hong, In Kee;Lee, Dae Bong;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.342-349
    • /
    • 2018
  • In this study, the physicochemical properties, emulsifying capacity, moisture content and cytotoxicity of the composite material produced by transesterification reactions of the olive oil (olive oil esters) were investigated for cosmetic applications. Olive oil esters with short (S) and long (L) reaction times were studied. From the TLC-image analysis, composition ratios of the olive oil esters S were found to be 5.2, 24.1, 46.4, and 21.9% for mono-, di-, tri-glyceride, and fatty acid ethyl ester, respectively. Those of the olive oil esters L were 4.1, 24.7, 40.6, and 28.8% for mono-, di-, tri-glyceride, and fatty acid ethyl ester, respectively. The iodine value, acid value, saponification value, unsaponified matter, refractive index, and specific gravity were determined and purity tests were also carried out and normalized to establish standards and testing methods for using olive oil esters in cosmetics. To evaluate their emulsifying capacities, the O/W emulsion was prepared without surfactants and the formation of the emulsified particles were confirmed. After 5 days of applying the olive oil esters to human skin, the skin moisture retention was improved by 13.1% from the initial state. For the evaluation of toxicity on human skin cells, the olive oil esters showed 90% or more of the cell viability at $0.2-200{\mu}g/mL$. These results suggested that olive oil esters can be applied as natural/non-toxic ingredients to cosmetics industries.

The Screening of Aflatoxin Producing Fungi from Commercial Meju and Soy Bean Paste in Western Gyeongnam by Immunoassay (면역분석기법을 이용한 서부경남 시판 메주 및 된장에서의 Aflatoxin 생성균 검색)

  • 박정현;강성조;오상석;정덕화
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.4
    • /
    • pp.274-279
    • /
    • 2001
  • Generally, non-aflatoxigenic fungi, such as Aspergillus oryzae, and Aspergillus are main microflora in Korean traditional fermented foods including Meju and soybean paste, but sometimes, Aspergillus flavus and Aspergillus parasiticus can be contaminated and accumulated aflatoxins during fermentation and storage. So the screening of aflatoxigenic strains in fermented traditional food is very important to improve the sanitary quality of those foods. In this work, we screened aflatoxin producing fungi from commercial Meju and soybean paste in Western Gyeongnam by immunoassay. Samples were randomly purchased from market of the commercial Meju(10 EA) and soybean paste(20 EA) in nine areas of Western Gyeongnam. Of the samples collected,24 strains and 22 strains of Aspergillus sp. were isolated from Meju and soybean paste, respectively. The isolated strains were cultured on SLS media at $25^{\circ}C$ for 15 days. The cultured broth were extracted with ethyl acetate and were analysed to determine aflatoxin B$_1$(AFB$_1$) by direct competitive ELISA(DC-ELISA). Six strains(25%) isolated from Meju, and 2 strains(9%) isolated from saybean paste, were confined as aflatoxin producing strains. The average range of aflatoxin productivity of isolates from Meju was 54.6 $\pm$ 38.7 ng/ml and that from soybean paste was 11.1 $\pm$ 8.6 ng/ml, respectively. Among them, isolated strain No. M-5-4 produced a high level of AFBl and showed 98.26 ng/ml of AFB$_1$. Every isolates were also re-confined their AFB$_1$productivity by thin layer chromatography(TLC). The TLC results also showed same trend as DC-ELISA results. As the above results, the screening of hazard mycotoxigenic fungi from traditional fermented foods should be necessary for the safety and the application of HACCP system in the food manufactory in Korea.

  • PDF

Studies on the Determination Method of Natural Sweeteners in Foods - Licorice Extract and Erythritol (식품 중 감초추출물 및 에리스리톨 분석법에 관한 연구)

  • Hong Ki-Hyoung;Lee Tal-Soo;Jang Yaung-Mi;Park Sung-Kwan;Park Sung-Kug;Kwon Yong-Kwan;Jang Sun-Yaung;Han Ynun-Jeong;Won Hye-Jin;Hwang Hye-Shin;Kim Byung-Sub;Kim Eun-Jung;Kim Myung-Chul
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.4
    • /
    • pp.258-266
    • /
    • 2005
  • Licorice Extract and Erythritol, food additives used in korea, are widely used in foods as sweetener. Its application for use in food is regulated by the standard and specification for food additives but official analytical method far determination of these sweetener in food has not been established. Accordingly, we has been carried out to set up analytical method of the glycyrrhizic acid in several foods by the way of thin layer chromatography and high performance liquid chromatography glycyrrhizic acid is qualitative anaylsis technique consists of clean-up with a sep-pak $C_{18}$ cartridge, separation of the sweeteners by Silica gel 60 F254 TLC plate using 1-butanol:4Nammonia solution:ethanol (50:20:10) as mobile solvent. Also, the quantitative analysis for glycyrrhizic acid, was performed using Capcell prk $C_{18}$ column at wavelength 254nm and DW:Acetonitrile (62:38 (pH2.5)) as mobile phase. and we has been carried out to set up analytical method of the erythritol in several foods by the way of high performance liquid chromatography. erythritol is qualitative anaylsis technique consists of clean-up with a DW and hexane. The quantitative analysis for erythritol, was performed using Asahipak NH2P-50 column, Rl and DW:Acetonitrile (25:75) as mobile phase. The glycyrrhizic acid results determined as glycyrrhizic acid in 105 items were as follows; N.D$\∼$48.7ppm for 18 items in soy sauce, N.D$\∼$5.3ppm for 12 items in sauce, N.D$\∼$988.93ppm for 15 items in health food, N.D$\∼$180.7ppm for 26 items in beverages, N.D$\∼$2.6ppm for 8 items in alcoholic beverages repectively and ND for 63 items in the ethers. The erythritol results determined as erythritol in 52 items were as follows; N.D$\∼$155.6ppm for 13 items in gm, N.D$\∼$398.1ppm for 12 items in health foods repectively and ND for 45 items in the others.

Comparison of Carotenoid Pigments on Manchurian Trout, Brachymystax lenok and Masu Salmon, Oncorhynchus macrostomus in the Family Salmonidae (연어과에 속하는 열목어와 산천어의 Carotenoid 색소성분의 비교)

  • BAEK Sung-Han;HA Bong-Seuk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.2
    • /
    • pp.278-287
    • /
    • 1998
  • Carotenoids in integument of wild manchurian trout, Brachymystax lenok, and wild and cultured masu salmon Oncohynchus macrostomus, which are all the Korean native cold fresh water fish, were investigated by thin layer chromatography, column chromatography and HPLC. The total carotenoid contents of the wild manchurian trout were $3.72\;mg\%$ which is relatively higher compare to other species of salmonidae. The carotenoids were composed of $36.9\%$ zeaxanthin and $14.7\%$ $\beta-carotene$ as the major compounds, $7.8\%$ triol $7.3\%$ isocryptoxanthin, $5.7\%$ 4-hydroxy echinenone, $4.7\%$ lutein, $4.5\%$ salmoxanthin and $2.2\%$ astaxanthin as minor compounds, and other carotenoids such as canthaxanthin, tunaxanthin A, tunaxanthin B, tunaxanthin C, $\beta-cryptoxanthin$ and $\alpha-cryptoxanthin$ as minute carotenoids. Wild masu salmon contained more total carotenoids than cultured one and the contents were $0.82\;mg\%$ and $0.66\;mg\%$, respectively. The composition of the carotenoids from wild masu salmon were $20.7\%$ xeaxanthin, $17.0\%$ isocryptoxanthin and $15.8\%\;\beta-carotene$ as major compounds, and $6.2\%$ triol, $6.1\%$ 4-hydroxy echinenone, $6.1\%$ salmoxanthin, $5.9\%$ canthaxanthin, $5.8\%$ lutein, $4.9\%$ $\alpha-cryptoxanthin$ and $1.0\%$ astaxanthin as minor compounds. The composition of the carotenoids from cultured masu salmon were $19.7\%$ isocryptoxanthin, $18.0\%$ $\beta-carotene$ and $10.3\%$ zeaxanthin as the major compounds, and $8.9\%\;\beta-cryptoxanthin$, $8.5\%\;\alpha-cryptoxanthin$, $8.0\%$ lutein, $7.6\%$ canthaxanthin, $5.1\%$ triol and $2.0\%$ astaxanthin as minor carotenoids. Based on these data, wild masu salmon contained more zeaxanthin, salmoxanthin and 4-hydroxy echinenone while cultured masu salmon contained more $\alpha-cryptoxanthin$, indicating that carotenoid pigment of masu salmon depends on their living conditions. Unlike wild masu salmon, 4-hydroxy echinenone and salmoxanthin which are the characteristic carotenoids of salmons, were not found in the integument of cultured masu salmon. Unlike manchurian trout, both wild and cultured masu salmon did not contain tunaxanthin A, tunaxanthin B and tunaxanthin C.

  • PDF

A Study on the Synthesis, Labeling and Its Biodistribution of Estradiol Derivatives (에스트라디올 유도체의 합성, 표지 및 체내동태에 관한 연구)

  • Kim, Sang-Wook;Yang, Seung-Dae;Suh, Yong-Sup;Chun, Kwon-Soo;Ahn, Soon-Hyuk;Lim, Soo-Jung;Choi, Chang-Woon;Lim, Sang-Moo;Kim, Young-Soon;Yu, Kook-Hyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.5
    • /
    • pp.403-409
    • /
    • 2000
  • Objectives: Due to the heterogeneous receptor distribution and changes of receptor status over time, the biochemical measurement of estrogen receptor status of biopsy specimens is not sufficient to diagnose breast cancer. As a result, I-123 labeled estradiols have been applied for the diagnosis. The purpose of this study was to develop a suitable radioligand for imaging estrogen receptor-positive human breast tumors. Methods: Among the various estradiol derivatives, $17{\alpha}-[^{123}I]$iodovinyl estradiol ($[^{123}I]$IVE) has been prepared from $17{\alpha}$-ethynyl estradiol. Labeling of $E-17{\alpha}-[^{123}I]$iodovinyl estradiol (E-$[^{123}I]$IVE) was carried out using peracetic acid with $[^{123}I]NaI\;and\;Z-[^{123}I]IVE$ labelling was archived using chloamine-T/HCl solution with $[^{123}I]$NaI. Labeling yield was determined by silica thin-layer chromatography (TLC) and radiochemical purity was measured by high performance liquid chromatography (HPLC). The biodistribution of E-$[^{123}I]$IVE was measured in immature female rats at 60 min, 120 min and 300 min after injection. Results: The labeling yield of two isomers was 92% and 94% ($E-[^{123}I]IVE\;and\;Z-[^{123}I]IVE$, respectively). The radiochemical purity was more than 98% after purification. The highest uptake was observed at 120 min in uterus (3.11% ID/g for E-$[^{123}I]$IVE). Conclusion: These results suggest the possibility of using E-$[^{123}I]$IVE as an imaging agent for the evaluation of the evaluation of the presence of estrogen receptor in patients with breast cancer.

  • PDF

Identification and Quantification of Phytosterols in Maize Kernel and Cob (옥수수 종실 및 속대의 Phytosterol 동정과 함량 변이)

  • Kim, Sun-Lim;Kim, Mi-Jung;Jung, Gun-Ho;Lee, Yu-Young;Son, Beom-Young;Kim, Jung-Tae;Lee, Jin-Seok;Bae, Hwan-Hee;Go, Young-Sam;Kim, Sang-Gon;Baek, Seong-Bum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.131-139
    • /
    • 2018
  • Unsaponifiables in the kernel and the cob of 7 maize varieties were analyzed by using thin-layer chromatography (TLC) and gas chromatography (GC) for the identification of phytosterols and their concentrations. The unsaponifiables of the kernel were clearly separated into band I (campesterol, stigmasterol, and ${\beta}$-sitosterol), band II (${\Delta}^5$-avenasterol), band III (${\Delta}^7$- stigmastenol), and band IV (${\Delta}^7$-avenasterol). In the cob, on the other hand, three or more bands were separated in addition to bands. The GC analysis of unsaponifiables showed good separation of campesterol, stigmasterol and ${\beta}$-sitosterol, but the mixture of ${\Delta}^7$-avenasterol (retention time[RT] 22.846), ${\Delta}^7$-stigmastenol (RT 22.852), and ${\Delta}^5$-avenasterol (RT 22.862) showed poor separation. Phytosterol content of the maize kernel was 635.9 mg/100 g, and that of the cob was 273.0 mg/100 g, respectively. The phytosterol content of the kernel was 2.4-fold higher than that of the cob. The phytosterol content of the kernel was higher in the order ${\beta}$sitosterol 80.05% > campesterol 10.5% > stigmasterol 9.46%, but that of the cob was higher in the order ${\beta}$-sitosterol 59.43% > stigmasterol 31.72% > campesterol 10.98%. Based on these results, it appears that the phytosterols of the maize kernel are synthesized in the maize cob and are transferred to the kernel, because the precursors (${\Delta}^7$-avenasterol, ${\Delta}^7$-stigmastenol, and ${\Delta}^5$-avenasterol) of major phytosterols were detected in maize cobs.

Production of γ-amino Butyric Acid by Lactic Acid Bacteria in Skim Milk (탈지방우유에서 가바생성 유산균 배양을 통한 가바생성 연구)

  • Cha, Jin Young;Kim, Young Rok;Beck, Bo Ram;Park, Ji Hun;Hwang, Cher Won;Do, Hyung Ki
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.223-228
    • /
    • 2018
  • Lactic acid bacteria were isolated from a variety of fermented seafoods and sea creatures from the East Sea Rim, Korea and were screened for ${\gamma}-amino$ butyric acid-producing (GABA) activity. Through a 16S rRNA sequence analysis, the bacteria of interest, which were GABA-positive on the thin-layer chromatography analysis, were recognized as three isolates of Lactobacillus (Lb.) brevis and one isolate of Lactococcus (Lc.) lactis. Lb. brevis FSFL0004 and FSFL0005 were isolated from fermented anglerfish and Lb. brevis FSFL0036 was derived from salted cutlass fish. The Lc. lactis strain FGL0007 was isolated from the gut of a brown sole flounder. According to HPLC analysis, the GABA contents produced by FSFL0004, FSFL0005, FSFL0036 and FGL0007 were equivalent to $10,754.37{\mu}g/ml$, $13,082.79{\mu}g/ml$, $12,290.19{\mu}g/ml$, and $45.07{\mu}g/ml$ respectively in 1% monosodium glutamate-supplemented methionyl-tRNA synthetase (MRS) broth. The four strains were inoculated in skim milk with 1% monosodium glutamate to commercialize the strains as starter cultures for GABA-enriched dairy products, and TLC results displayed the production of ${\gamma}-amino$ butyric acid by all four strains in the adaptation media. Lc. lactis FGL0007 demonstrated the greatest GABA production ($431.42{\mu}g/ml$) by HPLC analysis. The GABA production by lactic acid bacteria strains in the skim milk demonstrated in the present study may be helpful for the production of GABA-enriched dairy products.

Phytochemical Analysis and Anti-cancer Investigation of Boswellia Serrata Bioactive Constituents In Vitro

  • Ahmed, Hanaa H;Abd-Rabou, Ahmed A;Hassan, Amal Z;Kotob, Soheir E
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7179-7188
    • /
    • 2015
  • Cancer is a major health obstacle around the world, with hepatocellular carcinoma (HCC) and colorectal cancer (CRC) as major causes of morbidity and mortality. Nowadays, there isgrowing interest in the therapeutic use of natural products for HCC and CRC, owing to the anticancer activity of their bioactive constituents. Boswellia serrata oleo gum resin has long been used in Ayurvedic and traditional Chinese medicine to alleviate a variety of health problems such as inflammatory and arthritic diseases. The current study aimed to identify and explore the in vitro anticancer effect of B. Serrata bioactive constituents on HepG2 and HCT 116 cell lines. Phytochemical analysis of volatile oils of B. Serrata oleo gum resin was carried out using gas chromatography-mass spectrometry (GC/MS). Oleo-gum-resin of B. Serrata was then successively extracted with petroleum ether (extract 1) and methanol (extract 2). Gas-liquid chromatography (GLC) analysis of the lipoidal matter was also performed. In addition, a methanol extract of B. Serrata oleo gum resin was phytochemically studied using column chromatography (CC) and thin layer chromatography (TLC) to obtain four fractions (I, II, III and IV). Sephadex columns were used to isolate ${\beta}$-boswellic acid and identification of the pure compound was done using UV, mass spectra, $^1H$ NMR and $^{13}C$ NMR analysis. Total extracts, fractions and volatile oils of B. Serrata oleo-gum resin were subsequently applied to HCC cells (HepG2 cell line) and CRC cells (HCT 116 cell line) to assess their cytotoxic effects. GLC analysis of the lipoidal matter resulted in identification of tricosane (75.32%) as a major compound with the presence of cholesterol, stigmasterol and ${\beta}$-sitosterol. Twenty two fatty acids were identified of which saturated fatty acids represented 25.6% and unsaturated fatty acids 74.4% of the total saponifiable fraction. GC/MS analysis of three chromatographic fractions (I,II and III) of B. Serrata oleo gum resin revealed the presence of pent-2-ene-1,4-dione, 2-methyl- levulinic acid methyl ester, 3,5- dimethyl- 1-hexane, methyl-1-methylpentadecanoate, 1,1- dimethoxy cyclohexane, 1-methoxy-4-(1-propenyl)benzene and 17a-hydroxy-17a-cyano, preg-4-en-3-one. GC/MS analysis of volatile oils of B. Serrata oleo gum resin revealed the presence of sabinene (19.11%), terpinen-4-ol (14.64%) and terpinyl acetate (13.01%) as major constituents. The anti-cancer effect of two extracts (1 and 2) and four fractions (I, II, III and IV) as well as volatile oils of B. Serrata oleo gum resin on HepG2 and HCT 116 cell lines was investigated using SRB assay. Regarding HepG2 cell line, extracts 1 and 2 elicited the most pronounced cytotoxic activity with $IC_{50}$ values equal 1.58 and $5.82{\mu}g/mL$ at 48 h, respectively which were comparable to doxorubicin with an $IC_{50}$ equal $4.68{\mu}g/mL$ at 48 h. With respect to HCT 116 cells, extracts 1 and 2 exhibited the most obvious cytotoxic effect; with $IC_{50}$ values equal 0.12 and $6.59{\mu}g/mL$ at 48 h, respectively which were comparable to 5-fluorouracil with an $IC_{50}$ equal $3.43{\mu}g/mL$ at 48 h. In conclusion, total extracts, fractions and volatile oils of B. Serrata oleo gum resin proved their usefulness as cytotoxic mediators against HepG2 and HCT 116 cell lines with different potentiality (extracts > fractions > volatile oil). In the two studied cell lines the cytotoxic acivity of each of extract 1 and 2 was comparable to doxorubicin and 5-fluorouracil, respectively. Extensive in vivo research is warranted to explore the precise molecular mechanisms of these bioactive natural products in cytotoxicity against HCC and CRC cells.

Isolation and Identification of a Photosensitizer from Pueraria thunbergiana Leaves that Induces Apoptosis in SK-HEP-1 Cells (P. thunbergiana 잎으로부터 SK-HEP-1세포에 대한 apoptosis를 유도하는 광과민성물질의 분리 및 구조동정)

  • Lee, Jun Young;Kim, Mi Kyeong;Ha, Jun Young;Kim, Yong Gyun;Hong, Chang Oh;Kim, So Young;Kim, Chung-Hwan;Kim, Keun Ki
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.242-251
    • /
    • 2014
  • The objective of this study was to isolate a photosensitizer from Pueraria thunbergiana leaves that induces apoptosis in SK-HEP-1 cells. Column chromatography and thin layer chromatography were used to isolate active compounds from extracts of P. thunbergiana leaves. The structures of the isolated compounds were determined by 1D-NMR, 2D-NMR, and FAB-mass spectroscopy. A substance, named M4-3, was purified from the leaves of P. thunbergiana using various chromatography methods, and the absorbance of the substance was measured. The absorbance was highest at 410 nm, suggesting that the M4-3 substance was a different compound from chlorophyll a and b, which absorb at 410, 502, 533, and 607 nm. Further analyses revealed that the M4-3 compound was a $13^2$-hydoxy pheophorbide, a methyl ester with a molecular weight of 662. M4-3 was identified as a derivative compound of pheophorbide, with a structure that magnesium comes away from the porphyrin ring. The results of the analysis of the cytotoxicity of the M4-3 substance against the SK-HEP-1 cells revealed that it inhibited rates of cell growth by 40% and 80% at a concentration of 0.04 ${\mu}M$ and 0.08 ${\mu}M$, respectively. The M4-3 compound was found to be a photosensitizer for cytotoxicity because it was appeared only in light condition as examining activity in different irradiation conditions (light condition and nonlight condition) under the same concentration. Analysis of morphological changes in the cells following cell death induced by exposure to the M4-3 substance reveled representative phenomena of apoptosis (nuclear condensation, vesicle formation, and fragmentation of DNA). The induction of apoptosis was attributed to the compound's photodynamic activity.

Isolation of a New Agar Degrading Bacterium, Maribacter sp. SH-1 and Characterization of its Agarase (신규 한천분해세균 Maribacter sp. SH-1의 분리 및 효소 특성조사)

  • Lee, Chang-Eun;Lee, Sol-Ji;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.156-162
    • /
    • 2016
  • In this study, we isolated a new agar-degrading marine bacterium and characterized its agarase. An agardegrading marine bacterium SH-1 was isolated from seawater, collected from the seashore of Namhae in Gyeongnam province, Korea, and cultured in marine agar 2216 media. It was identified as Maribacter. sp. SH-1 by phylogenetic analyses, based on 16S rRNA gene sequence. The extracellular agarase was extracted from culture media of Maribacter sp. SH-1 and characterized. Its relative activities were 56, 62, 94, 100, and 8% at 20, 30, 40, 50, and 60℃, respectively, whereas 15, 100, 60, and 21% relative activities were observed at pH 5, 6, 7, and 8, respectively. Its extracellular agarase exhibited maximum activity (231 units/l) at pH 6.0 and 50℃, in 20 mM Tris-HCl buffer. Therefore, this agarase would be applicable as it showed the maximum activity at the temperature at which the agar is in a sol state. Furthermore, the agarase activities remained over 90% at 20, 30, and 40℃ after 0.5 h exposure at these temperatures. Thin layer chromatography analysis suggested that Maribacter sp. SH-1 produces extracellular β-agarase, as it hydrolyzes agarose to produce neoagarooligosaccharides, such as neoagarohexaose (34.8%), neoagarotetraose (52.2%), and neoagarobiose (13.0%). Maribacter sp. SH-1 and its β-agarase would be useful for the production of neoagarooligosaccharides, which shows functional properties, like skin moisturizing, skin whitening, inhibition of bacterial growth, and delay in starch degradation.