• Title/Summary/Keyword: thin film transistors (TFTs) a-IGZO

Search Result 76, Processing Time 0.029 seconds

Improved Electrical Properties of Indium Gallium Zinc Oxide Thin-film Transistors by AZO/Ag/AZO Multilayer Transparent Electrode

  • No, Yeong-Su;Yang, Jeong-Do;Park, Dong-Hui;Wi, Chang-Hwan;Jo, Se-Hui;Kim, Tae-Hwan;Choe, Won-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.443-443
    • /
    • 2012
  • We fabricated a-IGZO TFT with AZO/Ag/AZO transparent multilayer source/drain contacts by rf magnetron sputtering. Enhanced electrical device performance of a-IGZO TFT with AZO/Ag/AZO multilayer S/D electrodes (W/L = = 400/50 mm) was achieved with a subs-threshold swing of 3.78 V/dec, a minimum off-current of 10-12 A, a threshold voltage of 1.80 V, a field effect mobility of 10.86 cm2/Vs, and an on/off ration of 9x109. It demonstrated the potential application of the AZO/Ag/AZO film as a promising S/D contact material for the fabrication of the high performance TFTs.

  • PDF

IGZO TFT Stability Improvement Based on Various Passivation Materials (다양한 Passivation 물질에 따른 IGZO TFT Stability 개선 방법)

  • Kim, Jaemin;Park, Jinsu;Yoon, Geonju;Cho, Jaehyun;Bae, Sangwoo;Kim, Jinseok;Kwon, Keewon;Lee, Youn-Jung;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.6-9
    • /
    • 2020
  • Thin film transistors (TFTs) with large-area, high mobility, and high reliability are important factors for next-generation displays. In particular, thin transistors based on IGZO oxide semiconductors are being actively researched for this application. In this study, several methods for improving the reliability of a-IGZO TFTs by applying various materials on a passivation layer are investigated. In the literature, inorganic SiO2, TiO2, Al2O3, ZTSO, and organic CYTOP have been used for passivation. In the case of Al2O3, excellent stability is exhibited compared to the non-passivation TFT under the conditions of negative bias illumination stress (NBIS) for 3 wavelengths (R, G, B). When CYTOP passivation, SiO2 passivation, and non-passivation devices were compared under the same positive bias temperature stress (PBTS), the Vth shifts were 2.8 V, 3.3 V, and 4.5 V, respectively. The Vth shifts of TiO2 passivation and non-passivation devices under the same NBTS were -2.2 V and -3.8 V, respectively. It is expected that the presented results will form the basis for further research to improve the reliability of a-IGZO TFT.

열처리에 따른 a-IGZO 소자의 전기적 특성과 조성 분포

  • Gang, Ji-Yeon;Lee, Tae-Il;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.43.1-43.1
    • /
    • 2011
  • Hydrogenated amorphous Si (a-Si:H), low temperature poly Si (LTPS) 등 기존 thin film transistors (TFTs)에 사용되던 채널 물질을 대체할 재료로써 다양한 연구가 진행되고 있는 amorphous indium-gallium-zinc-oxide (a-IGZO)는 TFT에 적용하였을 때 뛰어난 전기적 특성과 재연성을 나타낼 뿐만 아니라 넓은 밴드갭을 가져 투명소자로도 응용이 가능하다. 본 연구에서는 a-IGZO의 열처리에 따른 소자의 전기적 특성과 조성 분포의 관계를 확인하기 위해 다음과 같이 실험을 진행하였다. Si/SiO2 기판 위에 DC sputter를 이용하여 IGZO를 증착하고 $350^{\circ}C$에서 열처리를 한 후 evaporator로 Al 전극을 형성시켰다. 이 때 전기적 특성의 변화를 비교하기 위해 열처리 한 샘플과 열처리 하지 않은 샘플에 대해 I-V 특성을 측정하였고, 채널 내부의 조성 분포 변화를 transmission electron microscopy (TEM)의 energy dispersive spectrometer (EDS)를 이용하여 관찰하였다. 그 결과 열처리 된 a-IGZO 채널 층의 산소 비율이 감소하였으며 전체적인 조성이 고르게 분포 되었고 전기적 특성은 향상되었다.

  • PDF

RF Magnetron Spurrering법으로 증착한 IGZO 박막의 특성과 IGZO TFT의 전기적 특성에 미치는 RF Power의 영향

  • Jung, Yeon-Hoo;Kim, Se-Yun;Jo, Kwang-Min;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.340.2-340.2
    • /
    • 2014
  • 최근 비정질 산화물 반도체는 가시광 영역에서의 투명도와 낮은 공정 온도, 그리고 높은 Field-effect mobility로 인해 Thin film transistors의 Active channel layer의 재료로 각광 받고 있다. ZnO, IZO, IGO, ITGO등의 많은 산화물 반도체들이 TFT의 채널층으로의 적용을 위해 활발히 연구되고 있으며, 특히 비정질 IGZO는 비정질임에도 불구하고 Mobility가 $10cm^2/Vs$ 정도로 기존의 a-Si:H 보다 높은 Mobility 특성을 나타내고 있어 대화면 디스플레이와 고속 구동을 위한 LCD에 적용 할 수 있으며 또한 낮은 공정 온도로 인해 플렉서블 디스플레이에 응용될 수 있다는 장점이 있다. 우리는 RF magnetron sputtering법으로 증착한 비정질 IGZO TFT(Thin Film Transistors)의 전기적 특성과 IGZO 박막의 특성에 미치는 RF power의 영향을 연구하였다. 제작한 TFTs의 Active channel layer는 산소분압 1%, Room temperature에서 RF power별(50~150 W)로 Si wafer 기판 위에 30nm로 증착 하였고 100 nm의 $SiO_2$가 절연체로 사용되었다. 또한 박막 특성을 분석하기 위해 같은 Chamber 분위기에서 100 nm로 IGZO 박막을 증착하였다. 비정질 IGZO 박막의 X-ray reflectivity(XRR)을 분석한 결과 RF Power가 50 W에서 150 W로 증가 할수록 박막의 Roughness는 22.7 (${\AA}$)에서 6.5 (${\AA}$)로 감소하고 Density는 5.9 ($g/cm^3$)에서 6.1 ($g/cm^3$)까지 증가하는 경향을 보였다. 또한 제작한 IGZO TFTs는 증착 RF Power가 증가함에 따라 Threshold voltage (VTH)가 0.3~4(V)로 증가하는 경향을 나타내고 Filed-effect mobility도 6.2~19 ($cm^2/Vs$)까지 증가하는 경향을 보인다. 또한 on/off ratio는 모두 > $10^6$의 값을 나타내며 subthreshold slope (SS)는 0.3~0.8 (V/decade)의 값을 나타낸다.

  • PDF

Improvement in the Negative Bias Stability on the Water Vapor Permeation Barriers on ZnO-based Thin Film Transistors

  • Han, Dong-Seok;Sin, Sae-Yeong;Kim, Ung-Seon;Park, Jae-Hyeong;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.450-450
    • /
    • 2012
  • In recent days, advances in ZnO-based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). In particular, the development of high-mobility ZnO-based channel materials has been proven invaluable; thus, there have been many reports of high-performance TFTs with oxide semiconductor channels such as ZnO, InZnO (IZO), ZnSnO (ZTO), and InGaZnO (IGZO). The reliability of oxide TFTs can be improved by examining more stable oxide channel materials. In the present study, we investigated the effects of an ALD-deposited water vapor permeation barrier on the stability of ZnO and HfZnO (HZO) thin film transistors. The device without the water vapor barrier films showed a large turn-on voltage shift under negative bias temperature stress. On the other hand, the suitably protected device with the lowest water vapor transmission rate showed a dramatically improved device performance. As the value of the water vapor transmission rate of the barrier films was decreased, the turn-on voltage instability reduced. The results suggest that water vapor related traps are strongly related to the instability of ZnO and HfZnO TFTs and that a proper combination of water vapor permeation barriers plays an important role in suppressing the device instability.

  • PDF

Effect of gate electrode material on electrical characteristics of a-IGZO thin-film transistors (게이트 전극 물질이 a-IGZO 박막트랜지스터의 전기적 특성에 미치는 영향)

  • Oh, Hyungon;Cho, Kyoungah;Kim, Sangsig
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.170-173
    • /
    • 2017
  • In this study, we fabricate amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with three different gate electrode materials of Al, Mo and Pt on plastic substrates and investigate their electrical characteristics. Compared to an a-IGZO TFT with Al gate electrode, the threshold voltage of an a-IGZO TFT with a Pt electrode decreases from -4.2 to -0.3 V. and the filed-effect mobility is improved from 15.8 to $22.1cm^2/V{\cdot}s$. The threshold voltage shift of the TFT is affected by the difference between the work function of the gate electrode and the Fermi energy of the channel layer. Moreover, the Pt gate electrode is considered to be the suitable material in terms of the electrical characteristics of the TFT. In addition, an description on an a-IGZO TFT with a Mo electrode will be given here.

Improvement in the negative bias stability on the water vapor permeation barriers on Hf doped $SnO_x$ thin film transistors

  • Han, Dong-Seok;Mun, Dae-Yong;Park, Jae-Hyeong;Gang, Yu-Jin;Yun, Don-Gyu;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.110.1-110.1
    • /
    • 2012
  • Recently, advances in ZnO based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). However, the electrical performances of oxide semiconductors are significantly affected by interactions with the ambient atmosphere. Jeong et al. reported that the channel of the IGZO-TFT is very sensitive to water vapor adsorption. Thus, water vapor passivation layers are necessary for long-term current stability in the operation of the oxide-based TFTs. In the present work, $Al_2O_3$ and $TiO_2$ thin films were deposited on poly ether sulfon (PES) and $SnO_x$-based TFTs by electron cyclotron resonance atomic layer deposition (ECR-ALD). And enhancing the WVTR (water vapor transmission rate) characteristics, barrier layer structure was modified to $Al_2O_3/TiO_2$ layered structure. For example, $Al_2O_3$, $TiO_2$ single layer, $Al_2O_3/TiO_2$ double layer and $Al_2O_3/TiO_2/Al_2O_3/TiO_2$ multilayer were studied for enhancement of water vapor barrier properties. After thin film water vapor barrier deposited on PES substrate and $SnO_x$-based TFT, thin film permeation characteristics were three orders of magnitude smaller than that without water vapor barrier layer of PES substrate, stability of $SnO_x$-based TFT devices were significantly improved. Therefore, the results indicate that $Al_2O_3/TiO_2$ water vapor barrier layers are highly proper for use as a passivation layer in $SnO_x$-based TFT devices.

  • PDF

Photofield-Effect in Amorphous InGaZnO TFTs

  • Fung, Tze-Ching;Chuang, Chiao-Shun;Mullins, Barry G.;Nomura, Kenji;Kamiya, Toshio;Shieh, Han-Ping David;Hosono, Hideo;Kanicki, Jerzy
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1208-1211
    • /
    • 2008
  • We study the amorphous In-Ga-Zn-O thin-film transistors (TFTs) properties under monochromatic illumination ($\lambda=420nm$) with different intensity. TFT off-state drain current ($I_{DS_off}$) was found to increase with the light intensity while field effect mobility ($\mu_{eff}$) is almost unchanged; only small change was observed for sub-threshold swing (S). Due to photo-generated charge trapping, a negative threshold voltage ($V_{th}$) shift is also observed. The photofield-effect analysis suggests a highly efficient UV photocurrent conversion in a-IGZO TFT. Finally, a-IGZO mid-gap density-of-states (DOS) was extracted and is more than an order lower than reported value for a-Si:H, which can explain a good switching properties of the a-IGZO TFTs.

  • PDF

The Characteristics of Amorphous-Oxide-Semiconductor Thin-Film-Transistors According to the Active-Layer Structure (능동층 구조에 따른 비정질산화물반도체 박막트랜지스터의 특성)

  • Lee, Ho-Nyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1489-1496
    • /
    • 2009
  • Amorphous indium-gallium-zinc-oxide thin-film-transistors (TFTs) were modeled successfully. Dependence of TFT characteristics on structure, thickness, and equilibrium electron-density of the active layer was studied. For mono-active-layer TFTs, a thinner active layer had higher field-effect mobility. Threshold voltage showed the smallest absolute value for the 20 nm active-layer. Subthreshold swing showed almost no dependence on active-layer thickness. For the double-active-layer case, better switching performances were obtained for TFTs with bottom active layers with higher equilibrium electron density. TFTs with thinner active layers had higher mobility. Threshold voltage shifted in the minus direction as a function of the increase in the thickness of the layer with higher equilibrium electron-density. Subthreshold swing showed almost no dependence on active-layer structure. These data will be useful in optimizing the structure, the thickness, and the doping ratio of the active layers of oxide-semiconductor TFTs.

Improved Electrical Properties of Indium Gallium Zinc Oxide Thin-Film Transistors by AZO/Ag/AZO Multilayer Electrode

  • No, Young-Soo;Yang, Jeong-Do;Park, Dong-Hee;Kim, Tae-Whan;Choi, Ji-Won;Choi, Won-Kook
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • We fabricated an a-IGZO thin film transistor (TFT) with AZO/Ag/AZO transparent multilayer source/drain contacts by rf magnetron sputtering. a-IGZO TFT with AZO/Ag/AZO multilayer S/D electrodes (W/L = 400/50 ${\mu}m$) showed a subs-threshold swing of 3.78 V/dec, a minimum off-current of $10^{-12}$ A, a threshold voltage of 0.41 V, a field effect mobility of $10.86cm^2/Vs$, and an on/off ratio of $9{\times}10^9$. From the ultraviolet photoemission spectroscopy, it was revealed that the enhanced electrical performance resulted from the lowering of the Schottky barrier between a-IGZO and Ag due to the insertion of an AZO layer and thus the AZO/Ag/AZO multilayer would be very appropriate for a promising S/D contact material for the fabrication of high performance TFTs.