Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.1.6

IGZO TFT Stability Improvement Based on Various Passivation Materials  

Kim, Jaemin (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Park, Jinsu (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Yoon, Geonju (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Cho, Jaehyun (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Bae, Sangwoo (Technology Quality & Reliability Foundry Division, Samsung Electronics Co., LTD.)
Kim, Jinseok (Technology Quality & Reliability Foundry Division, Samsung Electronics Co., LTD.)
Kwon, Keewon (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Lee, Youn-Jung (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Yi, Junsin (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.1, 2020 , pp. 6-9 More about this Journal
Abstract
Thin film transistors (TFTs) with large-area, high mobility, and high reliability are important factors for next-generation displays. In particular, thin transistors based on IGZO oxide semiconductors are being actively researched for this application. In this study, several methods for improving the reliability of a-IGZO TFTs by applying various materials on a passivation layer are investigated. In the literature, inorganic SiO2, TiO2, Al2O3, ZTSO, and organic CYTOP have been used for passivation. In the case of Al2O3, excellent stability is exhibited compared to the non-passivation TFT under the conditions of negative bias illumination stress (NBIS) for 3 wavelengths (R, G, B). When CYTOP passivation, SiO2 passivation, and non-passivation devices were compared under the same positive bias temperature stress (PBTS), the Vth shifts were 2.8 V, 3.3 V, and 4.5 V, respectively. The Vth shifts of TiO2 passivation and non-passivation devices under the same NBTS were -2.2 V and -3.8 V, respectively. It is expected that the presented results will form the basis for further research to improve the reliability of a-IGZO TFT.
Keywords
IGZO; Passivation; Oxide TFT; Stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, Appl. Phys Lett., 93, 093504 (2008). [DOI: https://doi.org/10.1063/1.2977865]   DOI
2 K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett., 95, 013502 (2009). [DOI: https://doi.org/10.1063/1.3159831]   DOI
3 C. H. Tu, W. T. Lin, C. H. Chen, M. C. Hung, J. J. Chang, M. F. Chiang, and W. I Liao, J. Soc. Inf. Disp., 42, 1151 (2011). [DOI: https://doi.org/10.1889/1.3621028]
4 M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, Chem. Mater., 16, 639 (2004). [DOI: https://doi.org/10.1021/cm0304546]   DOI
5 A. Moldovan, F. Feldmann. M. Zimmer, J. Rentsch, J. Benick, and M. Hermle, Sol. Energy Mater. Sol. Cells, 142, 123 (2015). [DOI: https://doi.org/10.1016/j.solmat.2015.06.048]   DOI
6 J. R. Lloyd, Thin Solid Films, 91, 175 (1982). [DOI: https://doi.org/10.1016/0040-6090(82)90431-X]   DOI
7 A. Olziersky, P. Baequinha, A. Vila, L. Pereira, G. Goncalves, E. Fortunato, R. Martins, and J. R. Morante, J. Appl. Phys., 108, 064505 (2010). [DOI: https://doi.org/10.1063/ 1.3477192]   DOI
8 Y. Yang, G. Z. Hu, Y. Hao, X. H. Ma, S. Quan, L. Y. Yang, and S. G. Jiang, Chin. Phys. B, 19, 047301 (2010). [DOI: https://doi.org/10.1088/1674-1056/19/4/047301]   DOI
9 L. Kavan, M. Gratzel, J. Rathousky, and A. Zukalb, J. Electrochem. SOC., 143, 394 (1996). [DOI: https://doi.org/10.1149/1.1836455]   DOI
10 M. P. Walser, W. L. Kalb, T. Mathis, T. J. Brenner, and B. Batlogg, Appl. Phys. Lett., 94, 053303 (2009). [DOI:https://doi.org/10.1063/1.3077192]   DOI
11 S. Y. Huang, T. C. Chang, M. C. Chen, T. C. Chen, F. Y. Jian, Y. C. Chen, H. C. Huang, and D. S. Gan, ESurf. Coat. Technol., 231, 117 (2013). [DOI: https://doi.org/10.1016/j.surfcoat.2011.12.047]   DOI
12 S. H. Choi, J. H. Jang, J. J. Kim, and M. K. Han, IEEE Electron Device Lett., 33, 381 (2012). [DOI: https://doi.org/10.1109/LED.2011.2178112]   DOI
13 Y. H. Kim, H. S Kim, J. I. Han, and S. K. Park, Appl. Phys Lett., 97, 092105 (2010). [DOI: https://doi.org/10.1063/1.3485056]   DOI
14 M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett., 90, 212114 (2007). [DOI: https://doi.org/10.1063/1.2742790]   DOI
15 J. W. Park, D. Lee, H. Kwon, and S. Yoo, IEEE Electron Device Lett., 30, 362 (2009). [DOI: https://doi.org/10.1109/LED.2009.2013647]   DOI
16 X. Cheng, M. Caironi, Y. Y. Noh, J. Wang, C. Newman, H. Yan, A. Facchetti, and H. Sirringhaus, Chem. Mater., 22, 1559 (2010). [DOI: https://doi.org/10.1021/cm902929b]   DOI
17 W. L. Kalb, T. Mathis, S. Haas, A. F. Stassen, and B. Batlogg, Appl. Phys, Lett., 90, 092104 (2007). [DOI: https://doi.org/10.1063/1.2709894]   DOI
18 H. S. Seo, J. U. Bae, D. H. Kim, Y. J. Park, C. D. Kim, I. B. Kang, I. J. Chung, J. H. Choi, and J. M. Myoung. Electrochem. Solid-State Lett., 12, H348 (2009). [DOI:https://doi.org/10.1149/1.3168522]   DOI