• Title/Summary/Keyword: thickness variation

Search Result 1,688, Processing Time 0.031 seconds

Numerical Analysis of Through Transmission Pulsed Eddy Current Testing and Effects of Pulse Width Variation

  • Shin, Young-Kil;Choi, Dong-Myung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.255-261
    • /
    • 2007
  • By using numerical analysis methods, through transmission type pulsed eddy current (PEC) testing is modeled and PEC signal responses due to varying material conductivity, permeability, thickness, lift-off and pulse width are investigated. Results show that the peak amplitude of PEC signal gets reduced and the time to reach the peak amplitude is increased as the material conductivity, permeability, and specimen thickness increase. Also, they indicate that the pulse width needs to be shorter when evaluating the material conductivity and the plate thickness using the peak amplitude, and when the pulse width is long, the peak time is found to be more useful. Other results related to lift-off variation are reported as well.

Luminescence properties of ZnO thin films depending on the variation of the film thickness (ZnO 박막의 두께변화에 따른 광학적 특성변화 연구)

  • 심은섭;강홍성;강정석;김종훈;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.135-138
    • /
    • 2001
  • We report the structural ,optical and electrical properties of ZnO thin films depending on the variation of the film thickness. The properties of the films deposited on sapphire (001) substrates using a pulsed laser deposition technique (PLD) were characterized with XRD, hall measurement and photoluminescence (PL). In our study, the increase of the thickness of ZnO thin films shows the improvement of the structural and optical properties. The electric properties of the films were also well matched with the structural and optical properties

  • PDF

Robust Design of Air Compressor-Driving Quadratic Linear Actuator in Fuel Cell BOP System using Taguchi Method

  • Kim, Jae-Hee;Kim, Jun-Hyung;Kim, Jin-Ho
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.275-279
    • /
    • 2012
  • The linear actuator has the inherent drawback of air gap variation because its linear motion is usually guided by the springs, which destabilizes the dynamic performance. In order to design the linear actuator to be insensitive to air gap, this paper describes the robust design of the air compressor driving linear actuator using Taguchi method. The orthogonal arrays are constructed with selected control factors and noise factor for minimum experiment. The control factors are thickness of inner magnet, height of upper yoke, thickness of outer magnet and thickness of lower yoke while noise factor is airgap. The finite element analysis using commercial electromagnetic analysis program "MAXWELL" are performed instead of experiment. ANOVA are performed to investigate the effects of design factors. In result, the optimal robust linear actuator which is insensitive to air gap variation is designed.

Nanoscale NAND SONOS memory devices including a Seperated double-gate FinFET structure

  • Kim, Hyun-Joo;Kim, Kyeong-Rok;Kwack, Kae-Dal
    • Journal of Applied Reliability
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 2010
  • NAND-type SONOS with a separated double-gate FinFET structure (SDF-Fin SONOS) flash memory devices are proposed to reduce the unit cell size of the memory device and increase the memory density in comparison with conventional non volatile memory devices. The proposed memory device consists of a pair of control gates separated along the direction of the Fin width. There are two unique alternative technologies in this study. One is a channel doping method and the other is an oxide thickness variation method, which are used to operate the SDF-Fin SONOS memory device as two-bit. The fabrication processes and the device characteristics are simulated by using technology comuter-adided(TCAD). The simulation results indicate that the charge trap probability depends on the different channel doping concentration and the tunneling oxide thickness. The proposed SDG-Fin SONOS memory devices hold promise for potential application.

The study of bending and buckling behavior of sandwich structure according to design parameter variation (설계변수 변화에 따른 샌드위치 구조물의 굽힘 및 좌굴 거동에 관한 연구)

  • 한근조;안성찬;안성찬;김진영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.841-844
    • /
    • 1997
  • Sandwich structure is widely used in various fields of industry due to its excellent strength and stiffness compared with weight. We studied the buckling and bending behavior with respect to the variation of design parameters such as length, height, and thickness of honeycomb sandwich core. We found that as the density and the thickness of core become higher, the value of critical bucking load increased significantly. We found that the effect of bending stress due to critical buckling load resulted in high bending stress and the value of bending stress decreased in half according to the increase of length of core. The effect by bending stress is dominant above the portion of the intersection line between bending stress and the effect of buckling is dominant below the potion of it. We could get proper thickness ratio and density of core according to applied load conditions.

  • PDF

Shape Optimization of a Rotating Cantilever Beam Considering Its Modal and Stress Characteristics (회전 외팔보의 진동 및 응력 특성을 고려한 형상 최적화)

  • Yun, Yeong-Hun;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.645-653
    • /
    • 2001
  • It is well known that natural frequencies increase when a cantilever beam rotates about the axis perpendicular to its longitudinal axis. Such phenomena that are caused by centrifugal inertia forces are often referred to as the stiffening effects. Occasionally it is necessary to control the variation of a natural frequency or the maximum stress of a rotating beam. By changing the thickness of the rotating beam, the modal or the stress characteristics can be changed. The thickness of the rotating beam is assumed to be a cubic spline function in the present work. An optimization method is employed to find the optimal thickness shape of the rotating beam. This method can be utilized for the design of rotating structures such as turbine blades and aircraft rotary wings.

Shape Optimization of a Rotating Cantilever Beam Considering Its Modal Characteristics (진동 특성을 고려한 회전 외팔보 형상의 최적화)

  • Yun, Young-Hoon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.643-648
    • /
    • 2000
  • It is well known that natural frequencies increase when a cantilever beam rotates about the axis perpendicular to its longitudinal axis. Such phenomena that are caused by centrifugal inertia forces are often referred to as the stiffening effects. Occasionally it is necessary to control the variation of a natural frequency of a rotating beam. By changing the thickness of the rotating beam, the modal characteristics can be changed. The thickness of the rotating beam is assumed to be a cubic spline function in the present work. An optimization method is employed to find the optimal thickness shape of the rotating beam. This method can be utilized usefully for the design of rotating structures such as turbine blades and aircraft rotary wings.

  • PDF

Evaluation on the Properties of Strain Distribution of the sopt welding specimen under tensile-shear load (인장-전단하중을 받는 점 용접재의 변형률 분포 특성 평가)

  • 김덕중
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.113-118
    • /
    • 1999
  • In order to evaluate strength of spot welded joint, at first it is importent that we should know strain distribution near nugget zone. During loading, in HAZ, compressive strain increase with Increase of load, but in nugget zone tensile strain increase. During unloading, on the other hand, even through the decreases, the strain variation is not almost appeared in nugget zone and HAZ. In nugget boundary zone, the strain range increases continuously along with load increase on outer surface, but the strain increases continunously and decreases rapidly beyond yield strength on inner surface. In this paper, strain distribution are measured in inner and outer surface with variation of thickness and load under tensile-shear load. Tensile-shear strength increased as with increase of specimen thickness. As for thickness increase rates are 25%, 50%, 100%, and 150%, tensile-shear strength in crease rates are 40%, 81%, 130% and 228%.

  • PDF

n Analysis of Elastohydrodynamic lubrication in Line Contacts-the effect of temperature variation (유체 온도 변화를 고려한 선 접촉면사이의 탄성유체윤활 해석)

  • 서민호;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.364-373
    • /
    • 2001
  • This paper describes the variation of lubricant's temperature effects on elastohydrodynamic lubrication. The Newton-Raphson technique was used to solve the simultaneous system of Reynolds and elasticity equations. To show effects of lubricant's temperature, average temperature across the oil film was calculated using the energy equation. Pressure distribution, film shape, and temperature distribution were obtained for fully flooded conjunctions, and various dimensionless speed parameters while load and material parameters were held constant. Minimum film thickness were obtained for various material properties while load and velocity were held constant. It is drawn that the thermal effects have a strong influence on a minimum film thickness under high rolling velocity and slip ratio.

  • PDF

증발을 고려한 Wafer Spin Coating 박막 예측에 관한 수치 해석적 연구

  • 노영미;임익태;김광선
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.20-26
    • /
    • 2002
  • The fluid flow, mass transfer, heat transfer and film thickness variation during the spin coating process are numerically studied. The model is said to be 1-dimensional because radial variations in film thickness, concentration and temperature are ignored. The finite difference method is employed to solve the equations that are simplified using the similarity transformation. In early time film thinning is due to the radial convective outflow. However that slows during the first seconds of spinning so the film thinning due to evaporation of solvent becomes sole. The time various film thickness is analyzed according to the var ious solvent fraction in the coating liquid and in the bulk of the overlying gas and the temperature variation in the liquid film during the spin coating is estimated.

  • PDF