• 제목/요약/키워드: thickness modes

검색결과 392건 처리시간 0.026초

고무 접합이 후방복사된 리키 램파 프로파일에 미치는 영향 (Effects of Rubber Loading on the Ultrasonic Backward Radiation Profile of Leaky Lamb Wave)

  • 송성진;권성덕;정민호;김영환
    • 비파괴검사학회지
    • /
    • 제22권5호
    • /
    • pp.508-515
    • /
    • 2002
  • 다층재료의 접합특성 평가는 오랫동안 많은 논의가 있어 왔는데, 본 연구에서는 후방복사 초음파 기술을 사용하여 여러 충이 있는 재료의 특성을 평가하기 위한 자동화된 시스템을 개발하고 스틸 판재와 고무가 접합된 스틸 판재의 후방복사 프로파일을 획득하였다. 후방복사의 rf 파형과 주파수 스펙트럼은 리키 램파 모드들의 특성을 나타내고 있다. 집합된 고무 두께의 증가에 따라 입사각이 $13.4^{\circ}$일 때의 후방복사 진폭이 지수적으로 감소함을 보이며 부분적으로 고무가 접합된 시편에서 선택되어진 입사각으로 입사위치를 바꾸어가며 스캐닝한 결과 정확하게 고무가 접합되어 있지 않은 지역을 결정할 수 있었다. 리키 램파에 의한 후방복사는 판재의 물성은 물론이고 다층 재료의 접합특성 평가에 활용할 수 있다.

압전재료와 형상기억합금을 이용한 형상제어 (Shape Control using Piezoelectric Materials and Shape Memory Alloy)

  • 박현철;황운봉;오진택;배성민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1311-1320
    • /
    • 2000
  • In this study, shape memory alloy(SMA) wires and piezoceramic actuators(PZT's) are employed in order to generate higher modes on the beam deformations. Compressive force is generated and applied to the beam by the pre-strained SMA wires attached at both ends of the beam. PZT's apply concentrated moments to several locations on the beam. Combinations of the compressive force and concentrated moments are investigated in order to understand the higher-mode deformation of beams. The first desired mode shape is obtained by controlling the temperature of the SMA wires. The first and third mode shapes are performed experimentally by heating SMA wires up to phase transformation temperature. The adaptive wing is defined as a wing whose shape parameters such as the camber, wing twist and thickness can be varied in order to change the wing shape for various flight conditions. In this research, control of the camber has been studied. The wing model consists of three plates and many ribs. Two of the plates are placed parallel to each other and they are clamped at one edge. Third plate connects the other edges of the parallel plates together. Each rib is made of SMA wire and connected to the parallel plates. It generates concentrated force and applies to the plates in oblique directions. The PZT's are bonded onto the plates and exert concentrated moments upon the plate at several locations. The object of this research is to generate various shape of wing by combining the concentrated forces and moments.

  • PDF

냉간성형 각형강관 모살용접 T형 접합부의 최대내력(I) - 주관 플랜지 파괴모드 - (Ultimate Strength of Fillet-welded T-joints in Cold-formed Square Hollow Sections - Chord flange failure mode -)

  • 배규웅;박금성;강창훈;문태섭
    • 한국강구조학회 논문집
    • /
    • 제14권2호
    • /
    • pp.311-318
    • /
    • 2002
  • 본 논문은 냉간성형 각형강관 T형 접합부의 최대내력과 변형제한치에 대한 연구이다. 전회의 실험적 연구로부터, T형 접합부는 주관폭에 대한 지관폭의 비(${\beta}$) 0.8이하의 범위에서 변형의 증가와 함께 내력이 계속적으로 증가하는 양상을 나타내었다. 따라서, 일정한 변형량(주관플랜지에서의 변위)에 대응하는 하중을 T형 접합부의 최대내력으로 정의할 수 있을 것이다. 폭비(${\beta}$)와 주관 두께에 대한 폭의 비(B/T)가 주관 플랜지 파괴모드에 미치는 영향을 검토하였다. 기존의 Kato에 의해 수행된 실험을 포함한 실험결과로부터 $16.7{\leq}B/T{\leq}41.6$ 이고 $0.27{\leq}{\beta}{\leq}0.8$ 인 범위의 T형 접합부에 대하여, 최대내력을 정의를 위한 변형제한치는 주관폭의 3% 변형량(3%B)으로 제안하였다. CIDECT의 설계식 및 기존의 제안내력식과 실험결과를 비교하였고, 최종적으로 항복선이론에 근거한 내력식을 제안하였다.

Bonding of conventional provisional resin to 3D printed resin: the role of surface treatments and type of repair resins

  • Lim, Na-Kyung;Shin, Soo-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권5호
    • /
    • pp.322-328
    • /
    • 2020
  • PURPOSE. This study evaluated the shear bond strength between 3D printed provisional resin and conventional provisional resin depending on type of conventional provisional resin and different surface treatments of 3D printed resin. MATERIALS AND METHODS. Ninety-six disc-shaped specimens (Ø14 mm × 20 mm thickness) were printed with resin for 3D printing (Nextdent C&B, Vertex-Dental B. V., Soesterberg, Netherlands). After post-processing, the specimens were randomly divided into 8 groups (n=12) according to two types of conventional repair resin (methylmethacrylate and bis-acryl composite) and four different surface treatments: no additional treatment, air abrasion, soaking in methylmethacrylate (MMA) monomer, and soaking in MMA monomer after air abrasion. After surface treatment, each repair resin was bonded in cylindrical shape using a silicone mold. Specimens were stored in 37℃ distilled water for 24 hours. The shear bond strength was measured using a universal testing machine at a crosshead speed of 0.5 mm/min. Failure modes were analyzed by scanning electron microscope. Statistical analysis was done using one-way ANOVA test and Kruskal-Wallis test (α=.05). RESULTS. The group repaired with bis-acryl composite without additional surface treatment showed the highest mean shear bond strength. It was significantly higher than all four groups repaired with methylmethacrylate (P<.05). Additional surface treatments, neither mechanical nor chemical, increased the shear bond strength within methylmethacrylate groups and bis-acryl composite groups (P>.05). Failure mode analysis showed that cohesive failure was most frequent in both methylmethacrylate and bis-acryl composite groups. CONCLUSION. Our results suggest that when repairing 3D printed provisional restoration with conventional provisional resin, repair with bis-acryl composite without additional surface treatment is recommended.

Confinement models for high strength short square and rectangular concrete-filled steel tubular columns

  • Aslani, Farhad;Uy, Brian;Wang, Ziwen;Patel, Vipul
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.937-974
    • /
    • 2016
  • While extensive efforts have been made in the past to develop finite element models (FEMs) for concrete-filled steel tubular columns (CFSTCs), these models may not be suitable to be used in some cases, especially in view of the utilisation of high strength steel and high strength concrete. A method is presented herein to predict the complete stress-strain curve of concrete subjected to tri-axial compressive stresses caused by axial load coupled with lateral pressure due to the confinement action in square and rectangular CFSTCs with normal and high strength materials. To evaluate the lateral pressure exerted on the concrete in square and rectangular shaped columns, an accurately developed FEM which incorporates the effects of initial local imperfections and residual stresses using the commercial program ABAQUS is adopted. Subsequently, an extensive parametric study is conducted herein to propose an empirical equation for the maximum average lateral pressure, which depends on the material and geometric properties of the columns. The analysis parameters include the concrete compressive strength ($f^{\prime}_c=20-110N/mm^2$), steel yield strength ($f_y=220-850N/mm^2$), width-to-thickness (B/t) ratios in the range of 15-52, as well as the length-to-width (L/B) ratios in the range of 2-4. The predictions of the behaviour, ultimate axial strengths, and failure modes are compared with the available experimental results to verify the accuracy of the models developed. Furthermore, a design model is proposed for short square and rectangular CFSTCs. Additionally, comparisons with the prediction of axial load capacity by using the proposed design model, Australian Standard and Eurocode 4 code provisions for box composite columns are carried out.

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.

국부좌굴과 뒤틀림좌굴이 발생하는 종방향 보강재로 보강된 강판의 압축강도 (The Compressive Strength of Longitudinally Stiffened Plates Undergoing Local and Distortional Buckling)

  • 박호상;서상정;권영봉
    • 한국강구조학회 논문집
    • /
    • 제22권3호
    • /
    • pp.219-228
    • /
    • 2010
  • 본 논문에는 압축력을 받는 국부좌굴, 뒤틀림좌굴 및 두 좌굴의 혼합좌굴이 발생하는 종방향 보강재가 부착된 강판의 거동 및 극한 강도에 대한 실험적인 연구를 서술하였다. 압축력을 받는 보강판의 경우 서브패널의 폭-두께비와 보강재의 휨강성에 따라서 국부좌굴, 뒤틀림좌굴 또는 두 좌굴의 혼합형태의 좌굴이 발생하게 되고, 상당한 크기의 후좌굴강도가 발현되어 보강판의 극한강도를 지배하게 된다. 보강재의 휨강성과 보강재로 구분된 서브패널의 폭-두께비가 다른 두께 4.0mm, 공칭항복강도 235MP인 SM400 강판으로 제작된 보강판의 중심압축실험을 수행하고 유한요소해석결과와 비교하여 검증하였다. 실험 결과에 근거하여 보강판의 극한강도를 예측할 수 있는 직접강도법을 적용한 설계압축강도식을 제안하였다. 제안된 직접강도법은 뒤틀림좌굴 또는 국부좌굴과 뒤틀림좌굴이 혼합하여 발생하는 종방향 보강재로 보강된 강판의 극한강도를 적절하게 예측할 수 있는 것으로 판단되었다.

테라헤르츠파를 이용한 실리콘 웨이퍼의 도핑 정도와 물리적 특성 측정에 관한 연구 (The Doping Concentration and Physical Properties Measurement of Silicon Wafer Using Terahertz Wave)

  • 박성현;오경환;김학성
    • 비파괴검사학회지
    • /
    • 제37권1호
    • /
    • pp.1-6
    • /
    • 2017
  • 본 논문에서는 테라헤르츠파 시간분광영상시스템을 이용하여 도핑된 실리콘 웨이퍼의 물리적 특성을 측정하는 것에 관한 연구를 진행하였다. 투과모드와 $30^{\circ}$의 입사각을 가진 반사모드를 이용하여 측정하였으며 실리콘 웨이퍼의 도핑 정도는 N-type과 P-type 모두에서 $10^{14}$에서 $10^{18}$까지 다양하게 준비하였다. 그 결과, 도핑 정도와 테라헤르츠파와의 상관관계를 찾았으며 이를 이용하면 모든 경우에 대한 도핑된 실리콘 웨이퍼의 도핑 정도를 확인할 수 있다. 또한, 각 도핑된 실리콘 웨이퍼의 도핑된 두께, 굴절률, 유전율을 테라헤르츠 시간영역 파형분석을 통하여 계산할 수 있었다. 따라서, 테라헤르츠 시간분광영상화 기술은 도핑된 실리콘 웨이퍼의 굴절률과 유전율과 같은 물리적 특성뿐만 아니라 도핑 정도를 측정할 수 있는 유용한 기술이 될 것으로 기대된다.

회전 유연 디스크의 비 접촉 진동 억제 (Non-contact Vibration Suppression of a Rotating Flexible Disk)

  • 엄요한;이호렬;이성호;임윤철
    • 정보저장시스템학회논문집
    • /
    • 제1권2호
    • /
    • pp.169-174
    • /
    • 2005
  • Current information storage devices read/write data on the rotating disk. The axial vibration of a rotating disk should be suppressed for the successful operation of the device. Information storage devices widely used in these days adopt relatively thick disk which is stiff enough to suppress axial vibration under allowable limit. However, the thickness of the disk is going to be thinner and thinner as the small form factor of the devices is getting preferred by the consumer. In this study, a stabilizer system, which is composed with 8 air bearings, is proposed for suppressing the axial vibration of a $95{\mu}m$ thick PC disk in a non-contacting manner. The performance of the stabilizer system is simulated by numerical computation and then confirmed its results through a series of experiment. A thin and flexible disk has various vibration modes when it rotates in high speed. The stabilizer system generates positive as well as negative pressure due to the rotation of flexible disk so that the force due to the pressure distribution pushes and pulls rotating disk in a non-contacting manner. The balance between positive and negative pressure forces can be obtained by adjusting the area and the slope of the air bearing surface. The axial vibration of the flexible disk of 120mm diameter is suppressed successfully from over $1000{\mu}m$ to $30{\mu}m$ peak-to-peak value at the rotational speed of 5,000rpm.

  • PDF

Experimental Study on the Performance of a Bidirectional Hybrid Piezoelectric-Hydraulic Actuator

  • Jin, Xiao Long;Ha, Ngoc San;Li, Yong Zhe;Goo, Nam Seo;Woo, Jangmi;Ko, Han Seo;Kim, Tae Heun;Lee, Chang Seop
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.520-528
    • /
    • 2015
  • The piezoelectric-hydraulic actuator is a hybrid device that consists of a hydraulic pump driven by a piezo-stack coupled to a conventional hydraulic cylinder. The actuator is of compact size, but can produce a moderate energy output. Such hybrid actuators are currently being researched and developed in many industrialized countries due to the requirement for high performance and compact flight systems. In a previous study, we designed and manufactured a unidirectional hybrid actuator. However, the blocking force was not as high as expected. Therefore, in this study, we redesigned the pump chamber and hydraulic cylinder and also improved the system by removing the air bubbles. Two different types of piezo-stacks were used. In order to achieve bidirectional capabilities in the actuator, commercial solenoid valves were used to control the direction of the output cylinder. Experimental testing of the actuator in unidirectional and bidirectional modes was performed to examine performance issues related to driving frequency, bias pressure, reed valve thickness, etc. The results showed that the maximum blocking force was measured as 970.2N when the frequency was 185Hz.